Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define a subsequence of a sequence.

Theory 2. (3pts) Define when a sequence tends to ∞ .

Theory 3. (3pts) State the Monotone Convergence Theorem.

Type A problems (5pts each)

- A1. Use the definition of the limit to show $\lim \frac{2n+3}{n-7} = 2$.
- A2. Find $\lim \sqrt[2n]{7n^3}$.
- **A3.** If 0 < a < b, find $\lim (a^n + b^n)^{\frac{1}{n}}$.

A4. Establish convergence or divergence of $x_n = \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{2n}}$.

- A5. If $\lim x_n = \infty$ and $\lim y_n = \infty$, prove using the definition that $\lim (x_n + y_n) = \infty$.
- A6. Show $\lim \left(1 + \frac{1}{n}\right)^{n^2} = \infty$. Make sure you use only arguments we established.

Type B problems (8pts each)

B1. Use the squeeze theorem to determine $\lim \sqrt[n]{n^2 - 3n + 1}$.

B2. Let the sequence x_n be recursively given by: $x_1 = 1$, $x_{n+1} = \sqrt{7 + 2x_n}$. Show that this sequence converges and find its limit.

B3. Find $\lim \left(1 + \frac{1}{n^2}\right)^n$ and justify your reasoning. While this problem may be done fairly easily with "calculus 1" techniques, make sure you use only arguments we established (ask if unsure).

B4. Show that if a sequence (x_n) is unbounded, then there exists a subsequence (x_{n_k}) such that $\lim \frac{1}{x_{n_k}} = 0$.

B5. Use the definition to show that the sequence $x_n = \frac{n^2}{n^2+1}$ is Cauchy.

B6. Let the sequence x_n be recursively given by: $|x_1| \leq 1$, $x_{n+1} = \frac{1}{5}(x_n^3 + x_n - 1)$. Show that this sequence is contractive and write the equation that its limit satisfies (do not solve the equation, since it is not easy).

Type C problems (12pts each)

C1. Let the sequence x_n be recursively given by: $x_1 > 0$, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right)$.

- a) Show for any a > 0: $\frac{1}{2}\left(a + \frac{5}{a}\right) \ge \sqrt{5}$.
- b) Show that x_n is a contractive sequence (part a) will help).
- c) Find $\lim x_n$ if it exists.

C2. Inspired by a student question, this problem is a negative version of the homework problem: if the even terms and the odd terms of a sequence converge to the same limit, then the sequence converges to this limit. We give an example of a sequence (x_n) that can be broken up into infinitely many "disjoint" subsequences, all of which converge to the same limit, but (x_n) itself diverges.

For every prime p build the set $A_p \subseteq \mathbf{N}$ inductively as follows:

 $A_{2} = \{2, 4, 6, \dots\}, \text{ all multiples of } 2.$ $A_{3} = \{3, 6, 9, \dots\} \setminus A_{2},$ $A_{5} = \{5, 10, 15, \dots\} \setminus (A_{2} \cup A_{3}), \text{ and so on: if } p \text{ is the first prime after } q, \text{ then }$ $A_{p} = \{p, 2p, 3p, \dots\} \setminus (A_{2} \cup A_{3} \cup \dots \cup A_{q}).$

a) Show that A_p is infinite.

b) Show that $A_p \cap A_q = \emptyset$ if $p \neq q$ and $\mathbf{N} = A_2 \cup A_3 \cup A_5 \cup \dots$

Define the sequence: $x_n = \begin{cases} 1, & \text{if } n \text{ is prime} \\ 0, & \text{if } n \text{ is not prime.} \end{cases}$

Now suppose the infinitely many elements of A_p are labeled in increasing order as $A_p = \{n_{p1}, n_{p2}, \ldots, n_{pk}, \ldots\}$. For every prime p, consider the subsequence X_p of (x_n) whose k-th term is $x_{n_{pk}}$ (we may write this as $X_{pk} = x_{n_{pk}}$).

c) Show that x_n diverges.

d) Show that all the sequences X_p converge to the same limit.