Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define a subsequence of a sequence.
Theory 2. (3pts) Define when a sequence tends to ∞.
Theory 3. (3pts) State the Monotone Convergence Theorem.

Type A problems (5pts Each)

A1. Use the definition of the limit to show $\lim \frac{2 n+3}{n-7}=2$.
A2. Find $\lim \sqrt[2 n]{7 n^{3}}$.
A3. If $0<a<b$, find $\lim \left(a^{n}+b^{n}\right)^{\frac{1}{n}}$.
A4. Establish convergence or divergence of $x_{n}=\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\cdots+\frac{1}{\sqrt{2 n}}$.
A5. If $\lim x_{n}=\infty$ and $\lim y_{n}=\infty$, prove using the definition that $\lim \left(x_{n}+y_{n}\right)=\infty$.
A6. Show $\lim \left(1+\frac{1}{n}\right)^{n^{2}}=\infty$. Make sure you use only arguments we established.

Type B problems (8pts Each)

B1. Use the squeeze theorem to determine $\lim \sqrt[n]{n^{2}-3 n+1}$.
B2. Let the sequence x_{n} be recursively given by: $x_{1}=1, x_{n+1}=\sqrt{7+2 x_{n}}$. Show that this sequence converges and find its limit.

B3. Find $\lim \left(1+\frac{1}{n^{2}}\right)^{n}$ and justify your reasoning. While this problem may be done fairly easily with "calculus 1 " techniques, make sure you use only arguments we established (ask if unsure).

B4. Show that if a sequence $\left(x_{n}\right)$ is unbounded, then there exists a subsequence $\left(x_{n_{k}}\right)$ such that $\lim \frac{1}{x_{n_{k}}}=0$.

B5. Use the definition to show that the sequence $x_{n}=\frac{n^{2}}{n^{2}+1}$ is Cauchy.
B6. Let the sequence x_{n} be recursively given by: $\left|x_{1}\right| \leq 1, x_{n+1}=\frac{1}{5}\left(x_{n}^{3}+x_{n}-1\right)$. Show that this sequence is contractive and write the equation that its limit satisfies (do not solve the equation, since it is not easy).

Type C problems (12pts Each)

$\mathbf{C 1}$. Let the sequence x_{n} be recursively given by: $x_{1}>0, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{5}{x_{n}}\right)$.
a) Show for any $a>0: \frac{1}{2}\left(a+\frac{5}{a}\right) \geq \sqrt{5}$.
b) Show that x_{n} is a contractive sequence (part a) will help).
c) Find $\lim x_{n}$ if it exists.

C2. Inspired by a student question, this problem is a negative version of the homework problem: if the even terms and the odd terms of a sequence converge to the same limit, then the sequence converges to this limit. We give an example of a sequence $\left(x_{n}\right)$ that can be broken up into infinitely many "disjoint" subsequences, all of which converge to the same limit, but $\left(x_{n}\right)$ itself diverges.

For every prime p build the set $A_{p} \subseteq \mathbf{N}$ inductively as follows:

$$
\begin{aligned}
& A_{2}=\{2,4,6, \ldots\}, \text { all multiples of } 2 . \\
& A_{3}=\{3,6,9, \ldots\} \backslash A_{2}, \\
& A_{5}=\{5,10,15, \ldots\} \backslash\left(A_{2} \cup A_{3}\right), \text { and so on: if } p \text { is the first prime after } q, \text { then } \\
& A_{p}=\{p, 2 p, 3 p, \ldots\} \backslash\left(A_{2} \cup A_{3} \cup \cdots \cup A_{q}\right) .
\end{aligned}
$$

a) Show that A_{p} is infinite.
b) Show that $A_{p} \cap A_{q}=\emptyset$ if $p \neq q$ and $\mathbf{N}=A_{2} \cup A_{3} \cup A_{5} \cup \ldots$

Define the sequence: $x_{n}= \begin{cases}1, & \text { if } n \text { is prime } \\ 0, & \text { if } n \text { is not prime. }\end{cases}$
Now suppose the infinitely many elements of A_{p} are labeled in increasing order as $A_{p}=$ $\left\{n_{p 1}, n_{p 2}, \ldots, n_{p k}, \ldots\right\}$. For every prime p, consider the subsequence X_{p} of $\left(x_{n}\right)$ whose k-th term is $x_{n_{p k}}$ (we may write this as $X_{p k}=x_{n_{p k}}$).
c) Show that x_{n} diverges.
d) Show that all the sequences X_{p} converge to the same limit.

