Advanced Calculus 1 - Exam 1 MAT 525/625, Fall 2014 - D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define the ϵ-neighborhood of a.
Theory 2. (3pts) Define the supremum of a set.
Theory 3. (3pts) If S and T are sets and $T \subseteq S$, state the theorem (2 claims) that relates countability of S to countability of T.

Type A problems (5pts Each)

A1. Show using Mathematical Induction that $5^{n}-4 n-1$ is divisible by 16 for all $n \in \mathbf{N}$.
A2. Let A be countable and B uncountable. Prove that $A \cup B$ is uncountable and $A \cap B$ is countable.

A3. If $a \in \mathbf{R}$, use algebraic properties of \mathbf{R} to show that $-(-a)=a$, and $1 /(-a)=-(1 / a)$ (assuming $a \neq 0$).

A4. Show that $x+\frac{1}{x} \geq 2$ for all $x>0$ and that equality holds if and only if $x=1$.
A5. If they exist, find a lower bound of S, an upper bound of $S, \inf S$ and $\sup S$. There is $\begin{array}{lll}\text { no need to justify. } & \text { a) } S=(-1,4] & \text { b) } S=\left\{\left.\frac{1}{\sqrt{n}} \right\rvert\, n \in \mathbf{N}\right\}\end{array}$

Type B problems (8pts Each)

B1. Let A be a denumerable collection of lines in the plane. Show that the set of all points that are intersections of any two of those lines is countable.

B2. Let $a \in \mathbf{N}$ be an even number that is not divisible by 4. Show that \sqrt{a} is not a rational number.

B3. Determine and sketch the set of points in the plane satisfying $2|x|+|y| \leq 3$.
B4. Let $S=(1, \infty)$. If they exist, find a lower bound of S, an upper bound of S, $\inf S$ and $\sup S$. Prove the details, including nonexistence of any of the quantities.

B5. Let S be a nonempty set that is bounded above. Show that $\sup e^{S}=e^{\sup S}$. (As expected, $e^{S}=\left\{e^{s} \mid s \in S\right\}$.)

Type C problems (12PTS EACH)

C1. Let $S=\left\{x \in \mathbf{R} \mid x^{2}+b x+c=0\right.$ for some $\left.b, c \in \mathbf{Z}\right\}$. That is, S is the set of all solutions of quadratic equations $x^{2}+b x+c=0$ with coefficients $b, c \in \mathbf{Z}$. Show that S is countable.
$\mathbf{C 2}$. Show that the set of all functions $\mathbf{N} \rightarrow\{0,1\}$ is uncountable. Hint: any function $a: \mathbf{N} \rightarrow\{0,1\}$ may be thought of as a sequence of 0 's and 1 's.

C3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a strictly increasing function, and S a nonempty set that is bounded above. Although $\sup f(S)=f(\sup S)$ is true for reasonable functions f, find a function f - obviously, unreasonable - for which this is false.

