

1. (30pts) Let $f(x)=\left(x^{2}+x+2\right) e^{x}$. Draw an accurate graph of f by following the guidelines.
a) Find the intervals of increase and decrease, and local extremes.
b) Find the intervals of concavity and points of inflection.
c) Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
d) Use information from a)-c) to sketch the graph.
2. (14pts) Let $f(x)=\sin ^{2} x-\cos x$. Find the absolute minimum and maximum values of f on the interval $[0, \pi]$.
3. (18pts) Let f be continuous on $[-4,3]$. The graph of its derivative f^{\prime} is drawn below. Use the graph to answer (sign charts may help):
a) What are the intervals of increase and decrease of f ? Where does f have a local minimum or maximum?
b) What are the intervals of concavity of f ? Where does f have inflection points?
c) Use the information gathered in a) and b) to sketch the graph of f at right, if $f(-4)=0$.

4. (16pts) Consider $f(x)=x^{2}-3 x+5$ on the interval $[1,4]$.
a) Verify that the function satisfies the assumptions of the Mean Value Theorem.
b) Find all numbers c that satisfy the conclusion of the Mean Value Theorem.
5. (22pts) Consider a rectangle with sides on the x - and y-axes whose one vertex lies on the parabola $y=(x-3)^{2}$ and is enclosed in the region between the axes and the parabola. Among all such rectangles, find the one with the biggest area.

Bonus. (10pts) Draw a function, if possible, that satisfies the given conditions. Justify if such a function is not possible.
a) f defined on $[1,4]$, has a local maximum but no absolute maximum.
b) f continuous on $[1,4]$, has a local minimum but no absolute maximum.
c) f defined on $[1,4$), has no local minimum nor maximum, and has no absolute minimum nor maximum.

