College Algebra — Joysheet 8 MAT 140, Fall 2019 — D. Ivanšić

Saul Ocean

Name: Covers: 3.1, 3.2, 3.3 Show all your work!

Simplify, so that the answer is in form a + bi.

1.
$$(4pts) (2+3i)(1-i) - i(4-5i) = 2+3i-2i-3i^2 - (4i-5i^2)$$

= $5+i-4i+5i^2 = -3i$

2. (6pts)
$$\frac{4+i}{2-3i} = \frac{4+i}{2-3i} \cdot \frac{2+3i}{2+)i} = \frac{8+2i+12i+3i^2}{2^2-(3i)^2} = \frac{5+14i}{4-(-9)}$$

$$= \frac{5+14i}{13} = \frac{5}{13} + \frac{14}{13}i$$

3. (4pts) Simplify and justify your answer.
$$i^{85} = i^{84} \cdot i' = (i^4)^{21} \cdot i' = 1 \cdot i' = i'$$

- 4. (8pts) The water level of a river above normal (in feet) is given by $H(x) = -x^2 + 14x 9$, where x is the number of days after October 28th.
- a) On what dates was the water level 24 feet above normal?
- b) On what date did the water level peak?

a)
$$-x^{2}+14x-9=24$$

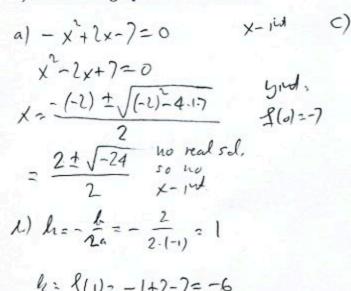
 $-x^{2}+14x-33=0$
 $x^{2}-14x+33=0$
 $(x-11)(x-3)=0$

Nov 8th 7 days after Oct 11th
$$h = -\frac{k}{14} = -\frac{14}{2\cdot(-1)} = 7$$
 is Nov 4th

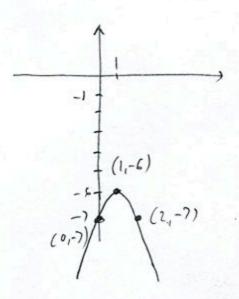
5. (8pts) Solve the equation:
$$x^6 - 3x^3 - 40 = 0$$

5. (8pts) Solve the equation:
$$x^6 - 3x^3 - 40 = 0$$

$$(x^2)^2 - 3x^3 -$$


$$x^{2} = 8 \text{ or } x^{3} = -5$$

 $x^{2} = 2 \text{ or } x^{2} = -\sqrt[3]{5}$


$$x^{2} - 12x + 8 = 0 \quad | + 6$$

$$x^{2} - 2 \cdot x \cdot 6 + 6 + 8 = 6$$

the square.
$$(x-6)^2 = 36-8$$
 $x=6\pm 2\sqrt{7}$ $(x-6)^2 = 28$

- 7. (12pts) The quadratic function $f(x) = -x^2 + 2x 7$ is given. Do the following without using the calculator.
- a) Find the x-intercepts of its graph, if any. Find the y-intercept.
- b) Find the vertex of the graph.
- c) Sketch the graph of the function.

8. (12pts) In a rectangle, one side is twice as long as another side, and the diagonal is 11 meters longer than the shorter side. What are the dimensions of the rectangle?

$$x^{2} + (2x)^{2} = (x+11)^{2}$$

$$x^{2} + (2x)^{2} = (x+11)^{2}$$

$$x^{2} + 4x^{2} = x^{2} + 2 \cdot x \cdot 11 + 11^{2}$$

$$5x^{2} = x^{2} + 22x + 121$$

$$4x^{2} - 22x - 121 = 0$$

$$x^{2} - \frac{(-22)^{2} + (-22)^{2} - 4 \cdot 4 \cdot (-12)}{2 \cdot 4}$$

$$= \frac{22 \pm \sqrt{484 + 1936}}{8}$$

$$= \frac{22 \pm \sqrt{2420}}{8} = \frac{22 \pm 2\sqrt{605}}{85.11^2}$$

$$= \frac{2(11 \pm \sqrt{605})}{4} = \frac{11 \pm \sqrt{605}}{4} = \frac{11 \pm 11\sqrt{5}}{4}$$
Since $\frac{11-11\sqrt{5}}{4}$ is negative, it's not possible fact (x\geq 0)

Thus, $\chi = \frac{11+11\sqrt{5}}{4}$
Dimensions: $\frac{11+11\sqrt{5}}{4}$ by $\frac{11+11\sqrt{5}}{2}$