Calculus 3 - Exam 4 MAT 309, Fall 2016 - D. Ivanšić

\qquad

1. (12pts) Let $\mathbf{F}(x, y)=\left\langle-\frac{x}{2},-\frac{2 y}{9}\right\rangle$.
a) Guess a function $f(x, y)$ so that $\mathbf{F}=\nabla f$.
b) Use the function f to draw the vector field without having to evaluate F at various points.
2. (20pts) In both cases set up and simplify the set-up, but do NOT evaluate the integral.
a) $\int_{C} \frac{y}{x^{2}+y^{2}+z^{2}} d s$, where C is the helix $x=3 \cos t, y=\frac{t}{\pi}, z=3 \sin t, t$ in $[0,4 \pi]$.
b) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, if $\mathbf{F}(x, y)=\left\langle x^{2} y^{2}, \frac{x}{y}\right\rangle$, where C is the arc of the hyperbola $x^{2}-y^{2}=1$ from point $(2, \sqrt{3})$ to point $(5,2 \sqrt{6})$.
3. (10pts) Let $f(x, y)=x^{2}+x y+y^{2}$, and let $\mathbf{F}=\nabla f$. Apply the fundamental theorem for line integrals to answer:
a) What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if C is the part of the right half of the circle $x^{2}+(y-2)^{2}=4$ from $(0,0)$ to $(1,2+\sqrt{3})$? How about if C is a straight line segment from $(0,0)$ to $(1,2+\sqrt{3})$?
b) What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if C is the curve consisting of the left half of the circle from a) together with the line segment from $(0,0)$ to $(0,4)$, traversed clockwise?
4. (22pts) a) Find curl of both of the vector fields below.
b) One of the fields is conservative. Find its potential function.

$$
\mathbf{F}(x, y, z)=\langle\sin z, x, x \cos z-\sin z\rangle \quad \mathbf{G}(x, y, z)=\left\langle 3 x^{2} y^{2}, 2 x^{3} y+e^{z},(2+y) e^{z}\right\rangle
$$

5. (24pts) Use Green's theorem to find the line integral $\int_{C}\left(x^{2}+y^{2}\right) d x+x y d y$, where C is the boundary of the trapezoid with vertices $(1,0),(3,0),(3,7)$ and $(1,1)$, traversed counterclockwise. Draw the trapezoid.
6. (12pts) Use Green's theorem to find the area of the unit disk.

Bonus. (10pts) Recall that we have shown that the field $\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$, defined on the region $D=\mathbf{R}^{2}$ without the origin, is not conservative on D, since its line integral over a unit circle is not 0 .
a) Let $f(x, y)=\arctan \frac{y}{x}$. Show that $\nabla f=\mathbf{F}$. Recall that $(\arctan u)^{\prime}=\frac{1}{1+u^{2}}$.
b) Why does a) not contradict our earlier finding of \mathbf{F} not being conservative on D ?

