Calculus 3 — Exam 4 MAT 309, Fall 2016 — D. Ivanšić

<u>Name</u>:

Show all your work!

- **1.** (12pts) Let $\mathbf{F}(x, y) = \left\langle -\frac{x}{2}, -\frac{2y}{9} \right\rangle$. a) Guess a function f(x, y) so that $\mathbf{F} = \nabla f$.
- b) Use the function f to draw the vector field without having to evaluate F at various points.

- 2. (20pts) In both cases set up and simplify the set-up, but do NOT evaluate the integral. a) $\int_C \frac{y}{x^2 + y^2 + z^2} \, ds$, where C is the helix $x = 3\cos t$, $y = \frac{t}{\pi}$, $z = 3\sin t$, t in $[0, 4\pi]$.
- b) $\int_C \mathbf{F} \cdot d\mathbf{r}$, if $\mathbf{F}(x,y) = \left\langle x^2 y^2, \frac{x}{y} \right\rangle$, where C is the arc of the hyperbola $x^2 y^2 = 1$ from point $(2,\sqrt{3})$ to point $(5,2\sqrt{6})$.

3. (10pts) Let $f(x,y) = x^2 + xy + y^2$, and let $\mathbf{F} = \nabla f$. Apply the fundamental theorem for line integrals to answer:

a) What is $\int_C \mathbf{F} \cdot d\mathbf{r}$ if C is the part of the right half of the circle $x^2 + (y-2)^2 = 4$ from (0,0) to $(1, 2 + \sqrt{3})$? How about if C is a straight line segment from (0,0) to $(1, 2 + \sqrt{3})$? b) What is $\int_C \mathbf{F} \cdot d\mathbf{r}$ if C is the curve consisting of the left half of the circle from a) together with the line segment from (0,0) to (0,4), traversed clockwise?

4. (22pts) a) Find curl of both of the vector fields below.

b) One of the fields is conservative. Find its potential function.

 $\mathbf{F}(x,y,z) = \langle \sin z, x, x \cos z - \sin z \rangle \qquad \mathbf{G}(x,y,z) = \langle 3x^2y^2, 2x^3y + e^z, (2+y)e^z \rangle$

5. (24pts) Use Green's theorem to find the line integral $\int_C (x^2 + y^2) dx + xy dy$, where C is the boundary of the trapezoid with vertices (1,0), (3,0), (3,7) and (1,1), traversed counterclockwise. Draw the trapezoid.

6. (12pts) Use Green's theorem to find the area of the unit disk.

Bonus. (10pts) Recall that we have shown that the field $\mathbf{F}(x, y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle$, defined on the region $D = \mathbf{R}^2$ without the origin, is not conservative on D, since its line integral over a unit circle is not 0.

a) Let $f(x, y) = \arctan \frac{y}{x}$. Show that $\nabla f = \mathbf{F}$. Recall that $(\arctan u)' = \frac{1}{1+u^2}$. b) Why does a) not contradict our earlier finding of \mathbf{F} not being conservative on D?