Calculus 3 - Exam 3 MAT 309, Fall 2016 - D. Ivanšić

Name:
Show all your work!

1. (18pts) Find $\iint_{D} \frac{1}{x} d A$ if D is the triangle bounded by lines $x=1, y=x-1$ and $y=7-3 x$. Sketch the region of integration first.
2. (18pts) Let D be the region bounded by the curves $y=x^{3}, x=2$ and $y=0$. Sketch the region and set up $\iint_{D} \frac{1}{\left(x^{4}+1\right)^{2}} d A$ as iterated integrals in both orders of integration. Then evaluate the double integral using the easier order. Sketch the region of integration first.
3. (18pts) Use polar coordinates to find $\iint_{D} \frac{x}{x^{2}+y^{2}} d A$, if D is the region inside the circle $(x-1)^{2}+y^{2}=1$ and outside the circle $x^{2}+y^{2}=1$. Sketch the region of integration first.
4. (18pts) Sketch the region E that is bounded by the planes $z=0, z=\frac{x}{3}$ and the parabolic cylinder $x=9-y^{2}$. Then write the two iterated triple integrals that stand for $\iiint_{E} f d V$ which end in $d y d z d x$ and $d x d z d y$.
5. (10pts) Find the cylindrical and spherical coordinates of the point whose cartesian coordinates are $(-\sqrt{6}, \sqrt{6}, 2)$.
6. (18pts) Use either cylindrical or spherical coordinates to set up $\iiint_{E} x^{2}+z^{2} d V$, where E is the region inside the sphere $x^{2}+y^{2}+z^{2}=16$ and above the cone $x^{2}+y^{2}=z^{2}$. Simplify the expression but do not evaluate the integral. Sketch the region E.

Bonus (10pts) Find the volume of the solid that is inside both cylinders: $x^{2}+y^{2}=1$ and $y^{2}+z^{2}=1$.

