College Algebra — Joysheet 5 MAT 140, Spring 2018 — D. Ivanšić

Name: Saul Ocean

Covers: 2.4, 2.5

Show all your work!

- 1. (21pts) For the following functions:
- a) determine algebraically whether they are odd, even, or neither
- b) use the calculator to draw their graphs here and verify your conclusions by stating symmetry.

$$f(x) = x^{2} - 4|x| - 5$$

$$f(-x) = (-x)^{2} - 4|-x| - 5$$

$$= x^{2} - 4|x| - 5 = f(x)$$

$$g(x) = x^{3} - 4x + 5$$

$$g(-x)^{2} - (-x)^{3} - 4(-x) + 5$$

$$= -x^{3} + 4x + 5 \neq f(x)$$

2. (16pts) Using transformations, draw the graphs of $f(x) = -(x-3)^2$ and g(x) = 2|x+4|+5. Explain how you transform graphs of basic functions in order to get the graphs of f and g. Indicate at least two points on each graph.

- 3. (10pts) Write the equation for the function whose graph has the following characteristics:
- a) shape of $y = \sqrt[3]{x}$, shifted up 4 units
- b) shape of $y = x^3$ stretched horizontally by factor 2, then shifted left 4 units
- c) shape of $y = \frac{1}{x}$, reflected about the x-axis, then stretched vertically by factor 3, then shifted up 5 units.

a)
$$y = \sqrt[3]{x} + 4$$

a) $5 = x^3 \longrightarrow y = (\frac{1}{2}x)^3 \longrightarrow y = (\frac{1}{2}(x+4))^3$

4. (13pts) The graph of f(x) is drawn below. On three separate graphs, sketch the graphs of the functions f(x+2), $\frac{1}{2}f(-x)$ and $f(\frac{1}{2}x)-3$ and label all the relevant points.

