Calculus 1 - Exam 4 MAT 250, Spring 2015 - D. Ivanšić

\qquad

1. (30pts) Let $f(x)=\frac{x^{2}}{x^{2}+1}$. Draw an accurate graph of f by following the guidelines.
a) Find the intervals of increase and decrease, and local extremes.
b) Find the intervals of concavity and points of inflection.
c) Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
d) Use information from a)-d) to sketch the graph.
2. (14pts) Let $f(x)=24 x^{\frac{1}{2}}-2 x^{\frac{3}{2}}$. Find the absolute minimum and maximum values of f on the interval $[1,9]$.
3. (16pts) Let f be continuous on $[-4,4]$. The graph of its derivative f^{\prime} is drawn below. Use the graph to answer (sign charts may help):
a) What are the intervals of increase and decrease of f ? Where does f have a local minimum or maximum?
b) What are the intervals of concavity of f ? Where does f have inflection points?
c) Use the information gathered in a) and b) to sketch the graph of f at right, if $f(-4)=0$.

4. (16pts) Let $f(x)=\sin ^{2} x, 0 \leq x \leq 2 \pi$. Find the intervals of concavity and points of inflection for f.
5. (24pts) Among all rectangles of area 100 square meters, find the one which has the shortest diagonal.

Bonus. (10pts) Suppose $f(x)>0$ and f is concave up. Let $g(x)=(f(x))^{2}$.
a) Find the expression for $g^{\prime \prime}(x)$.
b) Show that g is concave up.

