Calculus 1 - Exam 3
 MAT 250, Spring 2015 - D. Ivanšić

Name: \qquad

Differentiate and simplify where appropriate:

1. (3pts) $\frac{d}{d x} e^{x^{2}+3 x-1}=$
2. $(4 \mathrm{pts}) \frac{d}{d x} \ln \left(\tan ^{2} x\right)=$
3. $(6 \mathrm{pts}) \frac{d}{d t} \frac{t^{2}-3 t}{7^{t}}=$
4. (7pts) $\frac{d}{d x} \ln \frac{\sin x+\cos x}{\sin x-\cos x}=$
5. $(8 \mathrm{pts}) \frac{d}{d u}\left(u \arctan u-\frac{1}{2} \ln \left(1+u^{2}\right)\right)=$
6. (10pts) Use logarithmic differentiation to find the derivative of $y=x^{\sqrt{x}}$.
7. (4pts) Draw the graphs of $e^{x}, \ln x$ and $\arctan x$ (each in its coordinate system).

Find the limits algebraically. Graphs of basic functions will help, as will L'Hospital's rule, where appropriate.
8. $(2 \mathrm{pts}) \lim _{x \rightarrow-\infty} 5^{x}=$
9. $(6 \mathrm{pts}) \lim _{x \rightarrow 0^{+}} \arctan \left(4-\frac{1}{x}\right)=$
10. (6pts) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=$
11. (6pts) $\lim _{x \rightarrow 0^{+}} x^{3} \ln x=$
12. (10pts) $\lim _{x \rightarrow \infty}\left(x^{2}+3 x-1\right)^{\frac{1}{x}}=$
13. (10pts) Let $f(x)=\sqrt[3]{x}$.
a) Write the linearization of $f(x)$ at $a=8$.
b) Use the linearization to estimate $\sqrt[3]{8.3}$ and compare to the calculator value of 2.024694 .
14. (10pts) Radius of a sphere r is measured to be 10 meters, with maximum error 5 centimeters. Use differentials to estimate the maximum possible error, the relative error and the percentage error when computing the surface area A of the sphere ($A=4 \pi r^{2}$, leave your answer in terms of π).
15. (8pts) Let $f(x)=e^{x}+3 x+4$. Use the theorem on derivatives of inverses to find $\left(f^{-1}\right)^{\prime}(5)$.

Bonus. (10pts) Find the limit. (Note: for small $x>0, \ln x<0$, so we need a minus to ensure that the base is a positive number).
$\lim _{x \rightarrow 0+}(-\ln x)^{\ln (x+1)}=$

