Calculus 1 — Exam 3 MAT 250, Spring 2015 — D. Ivanšić

Name:

Show all your work!

Differentiate and simplify where appropriate:

1. (3pts)
$$\frac{d}{dx}e^{x^2+3x-1} =$$

2. (4pts)
$$\frac{d}{dx} \ln(\tan^2 x) =$$

3. (6pts)
$$\frac{d}{dt} \frac{t^2 - 3t}{7^t} =$$

4. (7pts)
$$\frac{d}{dx} \ln \frac{\sin x + \cos x}{\sin x - \cos x} =$$

5. (8pts)
$$\frac{d}{du} \left(u \arctan u - \frac{1}{2} \ln(1+u^2) \right) =$$

6. (10pts) Use logarithmic differentiation to find the derivative of $y = x^{\sqrt{x}}$.

7. (4pts) Draw the graphs of e^x , $\ln x$ and $\arctan x$ (each in its coordinate system).

Find the limits algebraically. Graphs of basic functions will help, as will L'Hospital's rule, where appropriate.

8. (2pts)
$$\lim_{x \to -\infty} 5^x =$$

9. (6pts)
$$\lim_{x\to 0^+} \arctan\left(4-\frac{1}{x}\right) =$$

10. (6pts)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} =$$

11. (6pts)
$$\lim_{x \to 0^+} x^3 \ln x =$$

12. (10pts)
$$\lim_{x \to \infty} (x^2 + 3x - 1)^{\frac{1}{x}} =$$

13. (10pts) Let $f(x) = \sqrt[3]{x}$.

- a) Write the linearization of f(x) at a = 8.
- b) Use the linearization to estimate $\sqrt[3]{8.3}$ and compare to the calculator value of 2.024694.

14. (10pts) Radius of a sphere r is measured to be 10 meters, with maximum error 5 centimeters. Use differentials to estimate the maximum possible error, the relative error and the percentage error when computing the surface area A of the sphere ($A = 4\pi r^2$, leave your answer in terms of π).

15. (8pts) Let $f(x) = e^x + 3x + 4$. Use the theorem on derivatives of inverses to find $(f^{-1})'(5)$.

Bonus. (10pts) Find the limit. (Note: for small x > 0, $\ln x < 0$, so we need a minus to ensure that the base is a positive number).

 $\lim_{x \to 0+} \, (-\ln x)^{\ln(x+1)} =$