| Trigonometry — Exam 1            | Name:               |
|----------------------------------|---------------------|
| MAT 145, Spring 2017— D. Ivanšić | Show all your work! |

**1.** (10pts) If  $\theta$  is an acute angle, find the values of all the trigonometric functions of  $\theta$  given that  $\tan \theta = \frac{1}{5}$ . Draw a picture.

**2.** (12pts) If  $\cos \theta = -\frac{2}{5}$  and  $\theta$  is in the third quadrant, find the exact values of all the trigonometric functions of  $\theta$ . Draw a picture.

**3.** (12pts) Without using the calculator, find the exact values of the following trigonometric functions. Draw the unit circle and the appropriate angle to infer the values from the picture.

$$\sin 150^\circ = \qquad \qquad \cos \frac{5\pi}{4} = \qquad \qquad \csc(-180^\circ) = \qquad \qquad \tan \frac{10\pi}{3} =$$

**4.** (9pts) Use the unit circle to estimate the values of the trigonometric functions of the angles drawn. Note the angles are **not** the standard angles.



**5.** (6pts) Convert into the other angle measure (radians or degrees). Show how you computed your number.

 $20^{\circ} =$ 

 $\frac{13\pi}{12}\,\mathrm{radians} =$ 

6. (6pts) Use your calculator to evaluate (round to 6 decimals):

$$\tan 49^\circ = \sec \frac{2\pi}{7} =$$

7. (3pts) Use your calculator to find the acute angle  $\theta$  (in degrees, round to 6 decimals) if  $\sin \theta = \frac{4}{17}$ 

8. (10pts) Draw two periods of the graph of  $y = 2\sin(4x + \pi)$ . What is the amplitude? The period? For each period, indicate x-coordinates of the five special points (middle, peaks, valleys).

**9.** (10pts) A kite attached to a 110 ft string is flying so that the angle of elevation from the ground anchor to the kite is  $35^{\circ}$ . How high above the ground is the kite?

**10.** (10pts) Apple's new headquarters building is in the shape of a ring with outer diameter 460 meters. If we refer to points on the circle via correspondence to a clock, how far would a person have to walk along the outside wall to get from a point at 1 o'clock to a point at 6 o'clock?

11. (12pts) The Earth rotates around the sun on an approximately circular path of radius 91.4 million miles. It takes the Earth 365.25 days for one complete revolution (hence the leap years!).

- a) What is Earth's angular velocity due to this rotation in radians per hour?
- b) What is Earth's linear velocity due to this rotation in miles per hour?

**Bonus.** (10pts) A circle of radius 16 meters is inscribed in a regular hexagon. Find the exact value of the perimeter of the hexagon (not a calculator approximation).



| Trigonometry — Exam 2<br>MAT 145, Spring 2017— D. Ivanšić                                                                     | Name: Show all your work!                                  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| $\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v \qquad \sin(2u)$                                                             | $) = 2\sin u \cos u$                                       |
| $\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v \qquad \cos(2u)$                                                             | $u) = \cos^2 u - \sin^2 u = 2\cos^2 u - 1 = 1 - 2\sin^2 u$ |
| $\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v} \qquad \qquad \tan(2v)$                                        | $u) = \frac{2\tan u}{1 - \tan^2 u}$                        |
| $\cos^2 \frac{u}{2} = \frac{1+\cos u}{2}$ $\sin^2 \frac{u}{2} = \frac{1-\cos u}{2}$ $\tan^2 \frac{u}{2} = \frac{1-\cos u}{2}$ | $\frac{1-\cos u}{1+\cos u}$                                |

**1.** (16pts) Use an identity (sum, difference, half- or double-angle) to find the exact values of the trigonometric functions below (do not use the calculator).

 $\sin 75^\circ =$ 

 $\tan 157.5^\circ =$ 

**2.** (9pts) Without using the calculator, find the exact values (in radians) of the following expressions. Draw the unit circle to help you.

$$\operatorname{arcsin} \frac{1}{2} = \operatorname{arccos} \left( -\frac{\sqrt{2}}{2} \right) = \operatorname{arcsin}(4) = \operatorname{arctan} \frac{1}{\sqrt{3}} =$$

**3.** (6pts) Find the exact value of the expressions (do not use the calculator). For one of them, you will need a picture.

$$\sin(\arcsin(-0.4)) = \qquad \qquad \arccos\left(\cos\frac{9\pi}{7}\right) =$$

**4.** (7pts) Find the exact value of the expression (do not use the calculator). Draw the appropriate picture.

$$\cos\left(\arctan\left(-\frac{7}{4}\right)\right) =$$

5. (8pts) Use identities to simplify the following expression.

$$\frac{\sin\left(\frac{\pi}{2}-\theta\right)}{\cos\theta} + \cos\left(\frac{\pi}{2}-\theta\right)\sin(-\theta) =$$

Show the identities:

**6.** (8pts)  $\tan \theta (\tan \theta + \cot \theta) = \sec^2 \theta$ 

7. (8pts)  $(\sin \theta + \cos \theta)^2 = 1 + \sin(2\theta)$ 

8. (5pts) Solve the equation in radians (give a general formula for all solutions).  $2\cos\theta + \sqrt{3} = 0$ 

**9.** (7pts) Use your calculator to solve the equation on the interval  $[0^\circ, 360^\circ)$  (answers in degrees). A picture will help.

 $\cos\theta=-0.8$ 

10. (14pts) Solve the equation in radians.
a) Give a general formula for all solutions.
b) List all the solutions that fall in the interval [0, 2π).

 $2\cos^2\theta + \cos\theta - 1 = 0$ 

11. (12pts) The two triangles in the picture are right triangles. One of them has an angle of measure  $\theta$ , the other,  $2\theta$ . Find the exact value for the length of side a (do not use the calculator).



**Bonus.** (10pts) Develop the formula for  $\cos(4\theta)$  by using sum or double-angle identities. The final expression should only have  $\sin \theta$  and  $\cos \theta$  in it.

| Trigonometry — Exam 3<br>MAT 145, Spring 2017— D. Ivanš                                | ić Name: Show all your work!                                     |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------|
| $\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$                                      | $\sin(2u) = 2\sin u \cos u$                                      |
| $\cos(u\pm v) = \cos u \cos v \mp \sin u \sin v$                                       | $\cos(2u) = \cos^2 u - \sin^2 u = 2\cos^2 u - 1 = 1 - 2\sin^2 u$ |
| $\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$                        | $\tan(2u) = \frac{2\tan u}{1 - \tan^2 u}$                        |
| $\cos^2 \frac{u}{2} = \frac{1+\cos u}{2}$ $\sin^2 \frac{u}{2} = \frac{1-\cos u}{2}$ ta | $n^2 \frac{u}{2} = \frac{1 - \cos u}{1 + \cos u}$                |

**1.** (6pts) Solve the triangle: a = 8, b = 3, c = 4.

**2.** (14pts) Solve the triangle:  $b = 10, c = 7, B = 44^{\circ}$ 

**3.** (13pts) Solve the triangle:  $b = 3, c = 2, A = 79^{\circ}$ .

4. (8pts) Draw points with the following polar coordinates. Then convert them into rectangular coordinates. Give exact answers — do not use the calculator.

$$(r,\theta) = \left(2,\frac{5\pi}{6}\right)$$
  $(r,\theta) = \left(-5,-\frac{3\pi}{4}\right)$ 

5. (10pts) Convert the following rectangular coordinates into polar coordinates. Draw a picture to make sure you have the correct  $\theta$ . For each point, give three answers in polar coordinates, at least one of which has a negative r. Give exact answers — do not use the calculator.

$$(x,y) = (3,-3)$$
  $(x,y) = (-2\sqrt{3},2)$ 

6. (9pts) Convert to a polar equation. Answer should be solved for r.  $x^2 + 2xy + y^2 = 5$  7. (8pts) The vertices of a triangle are given in **polar coordinates**:  $A = (0,0), B = (4, \frac{\pi}{3}), C = (5, \frac{\pi}{2}).$ 

a) Draw the triangle.

b) Find the exact area of the triangle (do not use the calculator).

8. (8pts) Use your calculator to draw an accurate graph of the polar curve  $r = 1 + 5\cos(4\theta)$ .

**9.** (11pts) To determine distances to a location C across the river, a surveyor puts poles at points A and B that are 32 meters apart. Using the poles, she is able to determine that the angle between lines of sight AB and AC from point A is 63° and the angle between lines of sight BA and BC from point B is 46°.

- a) How far apart are A and C?
- b) How far apart are B and C?



10. (13pts) Two planes leave an airport: one flies  $N12^{\circ}W$  at 450 mph, and the other flies  $S37^{\circ}E$  at 540 mph. What is the distance c between the planes after two hours?



**Bonus.** (10pts) In a circle of radius a, the large triangle, whose bottom side is a diameter, is split into two triangles as shown.

a) Find the expression for the area of each of the two smaller triangles in terms of a and  $\alpha$ . b) Show the areas are equal.



| Trigonometry — Final Exam<br>MAT 145, Spring 2017— D. Ivan                             | šić Name: Show all your work!                                     |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| $\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$                                      | $\sin(2u) = 2\sin u \cos u$                                       |
| $\cos(u\pm v) = \cos u \cos v \mp \sin u \sin v$                                       | $\cos(2u) = \cos^2 u - \sin^2 u = 2\cos^2 u - 1 = 1 - 2\sin^2 u$  |
| $\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$                        | $\tan(2u) = \frac{2\tan u}{1-\tan^2 u}$                           |
| $\cos^2 \frac{u}{2} = \frac{1+\cos u}{2}$ $\sin^2 \frac{u}{2} = \frac{1-\cos u}{2}$ to | $\operatorname{an}^2 \frac{u}{2} = \frac{1 - \cos u}{1 + \cos u}$ |

**1.** (12pts) If  $\sin \theta = -\frac{5}{8}$  and  $\theta$  is in the fourth quadrant, find the exact values of all the trigonometric functions of  $\theta$ . Draw a picture.

**2.** (12pts) Without using the calculator, find the exact values of the following trigonometric functions. Draw the unit circle and the appropriate angle to infer the values from the picture.

$$\cos 60^{\circ} = \qquad \qquad \sin \frac{5\pi}{4} = \qquad \qquad \sec(-90^{\circ}) = \qquad \qquad \tan \frac{8\pi}{3} =$$

**3.** (9pts) Without using the calculator, find the exact values (in radians) of the following expressions. Draw the unit circle to help you.

$$\operatorname{arccos} \frac{\sqrt{3}}{2} = \operatorname{arcsin} \left( -\frac{\sqrt{2}}{2} \right) = \operatorname{arccos}(2) = \operatorname{arctan}(-\sqrt{3}) =$$

**4.** (6pts) Find the exact value of the expressions (do not use the calculator). For one of them, you will need a picture.

$$\sin(\arcsin 0.2) = \qquad \qquad \arccos\left(\cos\frac{8\pi}{5}\right) =$$

**5.** (6pts) Convert into the other angle measure (radians or degrees). Show how you computed your number.

 $63^{\circ} =$ 

 $\frac{7\pi}{15}$  radians =

**6.** (10pts) Apple's new headquarters building is in the shape of a ring with outer diameter 460 meters. If we refer to points on the circle via correspondence to a clock, how far would a person have to walk along the outside wall to get from a point at 1 o'clock to a point at 8 o'clock, going the long way?

**7.** (8pts) Use an identity (sum, difference, half- or double-angle) to find the exact value of the trigonometric function below (do not use the calculator).

 $\cos 195^\circ =$ 

8. (7pts) Use your calculator to solve the equation on the interval  $[0^\circ, 360^\circ)$  (answers in degrees). A picture will help.

 $\cos\theta=-0.25$ 

- **9.** (14pts) Solve the equation in radians.
- a) Give a general formula for all solutions.
- b) List all the solutions that fall in the interval  $[0, 2\pi)$ .

 $2\sin^2\theta - \sin\theta - 1 = 0$ 

10. (14pts) Solve the triangle:  $a = 7, c = 6, A = 38^{\circ}$ 

11. (8pts) Draw points with the following polar coordinates. Then convert them into rectangular coordinates. Give exact answers — do not use the calculator.

$$(r,\theta) = \left(3,\frac{\pi}{6}\right)$$
  $(r,\theta) = \left(-4,\frac{3\pi}{4}\right)$ 

12. (10pts) Convert the following rectangular coordinates into polar coordinates. Draw a picture to make sure you have the correct  $\theta$ . For each point, give three answers in polar coordinates, at least one of which has a negative r. Give exact answers — do not use the calculator.

$$(x,y) = (5\sqrt{3}, -5)$$
  $(x,y) = (-4,4)$ 

**13.** (10pts) A kite attached to a 60 ft string is flying so that the angle of elevation from the ground anchor to the kite is 49°. How high above the ground is the kite?

14. (11pts) To determine distances to a location C across the river, a surveyor puts poles at points A and B that are 32 meters apart. Using the poles, she is able to determine that the angle between lines of sight AB and AC from point A is 63° and the angle between lines of sight BA and BC from point B is 46°.

a) How far apart are A and C?

b) How far apart are B and C?



15. (13pts) Two planes leave an airport: one flies  $N12^{\circ}W$  at 250 mph, and the other flies  $S37^{\circ}E$  at 300 mph. What is the distance c between the planes after two hours?



**Bonus.** (7pts) A circle of radius 16 meters is inscribed in a regular hexagon. Find the exact value of the perimeter of the hexagon (not a calculator approximation).



**Bonus.** (8pts) In a circle of radius a, the large triangle, whose bottom side is a diameter, is split into two triangles as shown.

a) Find the expression for the area of each of the two smaller triangles in terms of a and  $\alpha$ . b) Show the areas are equal.

