Trigonometry — Exam 3 MAT 145, Spring 2017— D. Ivanšić

Name: Soul Ocean

Show all your work!

 $\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v$

$$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v$$

 $\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$

 $\cos^2 \frac{u}{2} = \frac{1+\cos u}{2}$

$$\sin^2 \frac{u}{2} = \frac{1 - \cos u}{2}$$

$$\sin(2u) = 2\sin u \cos u$$

$$\cos(2u) = \cos^2 u - \sin^2 u = 2\cos^2 u - 1 = 1 - 2\sin^2 u$$

$$\tan(2u) = \frac{2\tan u}{1-\tan^2 u}$$

 $\tan^2 \frac{u}{2} = \frac{1 - \cos u}{1 + \cos u}$

1. (6pts) Solve the triangle:
$$a = 8$$
, $b = 3$, $c = 4$.

3+4<8 so not possible to hild mayle

or:
$$\cos C = \frac{8^2 + 3^2 - 4^2}{2.8.3} = \frac{57}{48} = [1875]$$

So un solution

(14pts) Solve the triangle: b = 10, c = 7, B = 44°

3. (13pts) Solve the triangle:
$$b=3,\,c=2,\,A=79^{\circ}.$$

$$\cos B = \frac{3.27^2 + 2^2 - 3^2}{2 \cdot 3.27 \cdot 2} = 0.436212$$

$$(r,\theta) = \left(-5, -\frac{3\pi}{4}\right)$$

$$x = -5\cos(-\frac{5\pi}{4}) = -5\cdot(-\frac{\pi}{12}) = \frac{5\pi}{5}$$

(10pts) Convert the following rectangular coordinates into polar coordinates. Draw a picture to make sure you have the correct θ . For each point, give three answers in polar coordinates, at least one of which has a negative r. Give exact answers — do not use the calculator.

(8pts) Draw points with the following polar coordinates. Then convert them into

$$(x,y) = (3,-3)$$

$$\gamma^{2} \sqrt{3^{2} + (-1)^{2}} = \sqrt{18^{2}} \sqrt{3}$$

$$+ \cos \theta = \frac{-3}{3} = -1, \quad \theta = -\frac{\pi}{4}$$

$$\left(3\sqrt{2}, -\frac{\pi}{4}\right)$$

72 (1+ 514 (20))=5

$$(x,y) = (-2\sqrt{3},2)$$

$$r = \sqrt{(-2\sqrt{5})^2 + 2^2} = \sqrt{12 + 4} = 4$$

$$ta\theta = \frac{2}{2\sqrt{5}} = -\frac{1}{\sqrt{3}}, \theta = \frac{5\pi}{6}$$

6. (9pts) Convert to a polar equation. Answer should be solved for
$$r$$
.

$$x^{2} + 2xy + y^{2} = 5$$

$$(\tau(0)\theta)^{\frac{1}{2}} + 2\tau(0)\theta + \tau(0)\theta + (\tau(0)\theta)^{\frac{1}{2}} \leq \tau^{2}(0)^{\frac{1}{2}} + 2\tau^{2} + \tau(0)\theta + \tau^{2} + \tau^{$$

- 7. (8pts) The vertices of a triangle are given in polar coordinates: $A = (0,0), B = (4, \frac{\pi}{3}), C = (5, \frac{\pi}{2}).$
- a) Draw the triangle.
- b) Find the exact area of the triangle (do not use the calculator).

Area =
$$\frac{1}{2}A.5.5 \times 0 = \frac{1}{2}.20.5 \times \frac{\pi}{6} = 10.\frac{1}{2} = 5$$

$$0 = \frac{\pi}{2} - \frac{\pi}{3} = \frac{3\pi - 2\pi}{6} = \frac{\pi}{6}$$

8. (8pts) Use your calculator to draw an accurate graph of the polar curve $r = 1 + 5\cos(4\theta)$.

- 9. (11pts) To determine distances to a location C across the river, a surveyor puts poles at points A and B that are 32 meters apart. Using the poles, she is able to determine that the angle between lines of sight AB and AC from point A is 63° and the angle between lines of sight BA and BC from point B is 46°.
- a) How far apart are A and C?
- b) How far apart are B and C?

10. (13pts) Two planes leave an airport: one flies $N12^{\circ}W$ at 450 mph, and the other flies $S37^{\circ}E$ at 540 mph. What is the distance c between the planes after two hours?

Bonus. (10pts) In a circle of radius a, the large triangle, whose bottom side is a diameter, is split into two triangles as shown.

a) Find the expression for the area of each of the two smaller triangles in terms of a and α .

b) Show the areas are equal.

