Mathematical Reasoning — Exam 2	Name:
MAT 312, Fall 2015 — D. Ivanšić	Show all your work!

1. (10pts) Prove the transitive property for congruences (*n* is a natural number): for all integers *a*, *b* and *c*, if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$.

2. (16pts) Prove using induction: for every natural number $n, 1+3+5+7+\cdots+(2n-1) = n^2$.

3. (12pts) Let p be a rational number. Prove: for every real number x, if x is irrational, then $\frac{1}{p+x}$ is irrational.

4. (22pts) Consider the statement: for every integer n, n is divisible by 5 if and only if $n^2 + n$ is divisible by 5.

a) Write the statement as a conjunction of two conditional statements.

b) Determine whether each of the conditional statements is true, and write a proof, if so.

c) Is the original statement true?

- 5. (20pts) Prove the following:
 a) For every integer a, if a² is divisible by 6, then a is divisible by 6.
 b) √6 is an irrational number. (Use statement a)).

6. (6pts) Use the triangle inequality to prove that for all real numbers c, d,|c+1 - (d+3)| < |c-d| + 2.

7. (14pts) Prove that for all real numbers $a, b, b \neq 0, \frac{2a}{b} \leq a^2 + \frac{1}{b^2}$.

Bonus. (10pts) Use the facts that $\sqrt{2}$ is irrational and that $0 < \frac{\sqrt{2}}{2} < 1$ to show that between any two rational numbers a and b there exists an irrational number.