Mathematical Reasoning - Exam 2
 MAT 312, Fall 2015 - D. Ivanšić
 Name:
 Show all your work!

1. (10pts) Prove the transitive property for congruences (n is a natural number): for all integers a, b and c, if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ then $a \equiv c(\bmod n)$.
2. (16pts) Prove using induction: for every natural number $n, 1+3+5+7+\cdots+(2 n-1)=n^{2}$.
3. (12pts) Let p be a rational number. Prove: for every real number x, if x is irrational, then $\frac{1}{p+x}$ is irrational.
4. (22pts) Consider the statement: for every integer n, n is divisible by 5 if and only if $n^{2}+n$ is divisible by 5 .
a) Write the statement as a conjunction of two conditional statements.
b) Determine whether each of the conditional statements is true, and write a proof, if so.
c) Is the original statement true?
5. (20pts) Prove the following:
a) For every integer a, if a^{2} is divisible by 6 , then a is divisible by 6 .
b) $\sqrt{6}$ is an irrational number. (Use statement a)).
6. (6pts) Use the triangle inequality to prove that for all real numbers c, d, $|c+1-(d+3)|<|c-d|+2$.
7. (14pts) Prove that for all real numbers $a, b, b \neq 0, \frac{2 a}{b} \leq a^{2}+\frac{1}{b^{2}}$.

Bonus. (10pts) Use the facts that $\sqrt{2}$ is irrational and that $0<\frac{\sqrt{2}}{2}<1$ to show that between any two rational numbers a and b there exists an irrational number.

