Algebra and Trigonometry — Joysheet 7 MAT 150, Fall 2017 — D. Ivanšić

Name: Saul Ocean

Covers: 3.3, 3.4, 3.5 Show all your work!

1. (4pts) Solve the equation.

$$|2x-1|=4$$
 $2x-1=4$ $2x-1=-4$ $2x=5$ $2x=-3$ $x=\frac{5}{2}$ $x=-\frac{3}{2}$

2. (12pts) Solve the inequalities. Draw your solution and write it in interval form.

$$|x+8| < 3$$
 $|5x-6| \ge 9$
 $|x-(-8)| < 3$ dist. from $5x + 66 \ge 9$
 $|x-6| \ge 9$ dist. from $5x + 66 \ge 9$
 $|x-6| \ge 9$ dist. from $5x + 66 \ge 9$
 $|x-6| \ge 9$ dist. from $5x + 66 \ge 9$
 $|x-9| + 9$ $|x-9| + 9$

Solve the equations:

3.
$$(8pts) \frac{2x+1}{x-6} - \frac{16x+21}{x^2-3x-18} = \frac{x-4}{x+3} \left| \cdot (x-6)(x+3) \right| 4$$
. $(8pts) 3x + \sqrt{26-5x} = 2x+4 \left| -3 \right| x$

$$(x-6)(x+3) \qquad \sqrt{26-5x} = 4-x \left| \frac{x-4}{x-6} \right| (x-6)(x+3) \qquad \sqrt{26-5x} = 2x+4 \qquad \sqrt{26-5x} =$$

- (14pts) A ball is thrown upwards from the ground with initial velocity 21 meters per second. Its height in meters after t seconds is given by $s(t) = -5t^2 + 21t$.
- a) Sketch the graph of the height function.
- b) When does the ball reach its greatest height, and what is that height?
- c) When is the ball at height 21 meters? [went to be 22]

a)
$$t(-5+21)=0$$

 $+=0 < \frac{21}{5}=4.2$
(2.1, 22.05)

e) value is
$$h = -\frac{21}{2(-5)} \frac{21}{10} = 2.1$$

$$h = -5 \cdot 2.1^{2} + 21 \cdot 2.$$

$$= 22.05$$
Greatest height of 22.05 m is reached after

c)
$$-5t^{2}+21t=21$$

 $h=-\frac{21}{2(-5)}\frac{21}{10}=2.1$ $5t^{2}-21t+21=0$
 $h=-5\cdot2.1^{2}+21\cdot2.1$ $t=\frac{-(-21)\pm\sqrt{(-21)-4\cdot5\cdot21}}{2\cdot5}$
 $=22.05$
Greatest height $=\frac{21\pm\sqrt{21}}{10}=2.558258$
of 22.05 $=\frac{21\pm\sqrt{21}}{10}=1.641742$

6. (14pts) Truck mechanic Igor wishes to build a repair shop with two side-by-side bays separated by a shorter wall (see picture). Igor has enough money to build 900 feet of walls, and he wants to build a shop with maximal area.

2.1 seconds

- a) Express the total area of the shop as a function of one of the sides of the rectangle. What is the domain of this function?
- b) Sketch the graph of the area function in order to find the maximum (no need for the graphing calculator — you should already know what the graph looks like). What are the dimensions of the shop that has the greatest total area? What is the greatest area possible?

x < 305

[5,305]

a)
$$A = xy$$

 $900 = 2x + x - 15 + y$
 $900 = 3x + y - 15$
so $y = 915 - 3x$
 $A = x(915 - 3x)$
 $= -3x^2 + 915x$

Max area: 69768.75 59. 84