Covers: 2.4, 2.5

Show all your work!

- 1. (21pts) For the following functions:
- a) determine algebraically whether they are odd, even, or neither
- b) use the calculator to draw their graphs here and verify your conclusions by stating symmetry.

$$f(x) = x^{3} - x^{2} + 4x$$

$$f(-x) = (-x)^{3} - (-x)^{2} + 4(-x)$$

$$= -x^{3} - x^{2} - 4x$$

$$f(x) = f(x)$$
so neither

$$g(x) = x^{5} - 7x^{3}$$

$$g(-x) = (-x)^{5} - 7(-x)^{3}$$

$$= -x^{5} - 7(-x^{3})$$

$$= -x^{5} + 7x^{3}$$

$$= -g(x) \quad \text{odd}$$

$$h(x) = |x| - 3x^{2} + 1$$

$$h(-x) = |-x| - 3(-x)^{2} + 1$$

$$= |x| - 3x^{2} + 1$$

$$= h(x) \quad \text{lien}$$

2. (16pts) Using transformations, draw the graphs of $f(x) = 4 + \sqrt[3]{-x}$ and $g(x) = -3(x-2)^2$. Explain how you transform graphs of basic functions in order to get the graphs of f and g. Indicate at least two points on each graph.

- 3. (10pts) Write the equation for the function whose graph has the following characteristics:
- a) shape of $y = \sqrt{x}$, shifted up 2 units
- b) shape of $y = x^3$ stretched horizontally by factor $\frac{1}{3}$, then shifted right 4 units
- c) shape of $y = \frac{1}{x}$, stretched vertically by factor 4, then reflected about the y-axis, then shifted left 1 unit.

a)
$$y = \sqrt{x+2}$$

b) $y = x^3 \rightarrow y = (3x)^3 \rightarrow y = (3(x-4))^3 = 27(x-4)^3$

4. (13pts) The graph of f(x) is drawn-below. On three separate graphs, sketch the graphs of the functions f(x-3), 2f(-x) and f(2x)+1 and label all the relevant points.

