Trigonometry — Final Exam	Name:
MAT 145, Spring 2017— D. Ivanšić	Show all your work!
$\sin(u \pm v) = \sin u \cos v \pm \cos u \sin v \qquad \qquad \sin(2u)$	$u = 2\sin u \cos u$
$\cos(u \pm v) = \cos u \cos v \mp \sin u \sin v \qquad \qquad \cos(2u)$	$u) = \cos^2 u - \sin^2 u = 2\cos^2 u - 1 = 1 - 2\sin^2 u$
$\tan(u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v} \qquad \qquad \tan(2u)$	$u) = \frac{2\tan u}{1 - \tan^2 u}$
$\cos^2 \frac{u}{2} = \frac{1+\cos u}{2}$ $\sin^2 \frac{u}{2} = \frac{1-\cos u}{2}$ $\tan^2 \frac{u}{2} = \frac{1-\cos u}{2}$	$\frac{1-\cos u}{1+\cos u}$

1. (12pts) If $\sin \theta = -\frac{5}{8}$ and θ is in the fourth quadrant, find the exact values of all the trigonometric functions of θ . Draw a picture.

2. (12pts) Without using the calculator, find the exact values of the following trigonometric functions. Draw the unit circle and the appropriate angle to infer the values from the picture.

3. (9pts) Without using the calculator, find the exact values (in radians) of the following expressions. Draw the unit circle to help you.

$$\operatorname{arccos} \frac{\sqrt{3}}{2} = \operatorname{arcsin} \left(-\frac{\sqrt{2}}{2} \right) = \operatorname{arccos}(2) = \operatorname{arctan}(-\sqrt{3}) =$$

4. (6pts) Find the exact value of the expressions (do not use the calculator). For one of them, you will need a picture.

$$\sin(\arcsin 0.2) = \qquad \qquad \arccos\left(\cos\frac{8\pi}{5}\right) =$$

5. (6pts) Convert into the other angle measure (radians or degrees). Show how you computed your number.

 $63^{\circ} =$

 $\frac{7\pi}{15}$ radians =

6. (10pts) Apple's new headquarters building is in the shape of a ring with outer diameter 460 meters. If we refer to points on the circle via correspondence to a clock, how far would a person have to walk along the outside wall to get from a point at 1 o'clock to a point at 8 o'clock, going the long way?

7. (8pts) Use an identity (sum, difference, half- or double-angle) to find the exact value of the trigonometric function below (do not use the calculator).

 $\cos 195^\circ =$

8. (7pts) Use your calculator to solve the equation on the interval $[0^\circ, 360^\circ)$ (answers in degrees). A picture will help.

 $\cos\theta=-0.25$

- **9.** (14pts) Solve the equation in radians.
- a) Give a general formula for all solutions.
- b) List all the solutions that fall in the interval $[0, 2\pi)$.

 $2\sin^2\theta - \sin\theta - 1 = 0$

10. (14pts) Solve the triangle: $a = 7, c = 6, A = 38^{\circ}$

11. (8pts) Draw points with the following polar coordinates. Then convert them into rectangular coordinates. Give exact answers — do not use the calculator.

$$(r,\theta) = \left(3,\frac{\pi}{6}\right)$$
 $(r,\theta) = \left(-4,\frac{3\pi}{4}\right)$

12. (10pts) Convert the following rectangular coordinates into polar coordinates. Draw a picture to make sure you have the correct θ . For each point, give three answers in polar coordinates, at least one of which has a negative r. Give exact answers — do not use the calculator.

$$(x,y) = (5\sqrt{3}, -5)$$
 $(x,y) = (-4,4)$

13. (10pts) A kite attached to a 60 ft string is flying so that the angle of elevation from the ground anchor to the kite is 49°. How high above the ground is the kite?

14. (11pts) To determine distances to a location C across the river, a surveyor puts poles at points A and B that are 32 meters apart. Using the poles, she is able to determine that the angle between lines of sight AB and AC from point A is 63° and the angle between lines of sight BA and BC from point B is 46°.

a) How far apart are A and C?

b) How far apart are B and C?

15. (13pts) Two planes leave an airport: one flies $N12^{\circ}W$ at 250 mph, and the other flies $S37^{\circ}E$ at 300 mph. What is the distance c between the planes after two hours?

Bonus. (7pts) A circle of radius 16 meters is inscribed in a regular hexagon. Find the exact value of the perimeter of the hexagon (not a calculator approximation).

Bonus. (8pts) In a circle of radius a, the large triangle, whose bottom side is a diameter, is split into two triangles as shown.

a) Find the expression for the area of each of the two smaller triangles in terms of a and α . b) Show the areas are equal.

