Trigonometry - Final Exam
MAT 145, Spring 2017- D. Ivanšić

Name: \qquad
Show all your work!

$$
\begin{array}{|ll}
\hline \sin (u \pm v)=\sin u \cos v \pm \cos u \sin v & \sin (2 u)=2 \sin u \cos u \\
\cos (u \pm v)=\cos u \cos v \mp \sin u \sin v & \cos (2 u)=\cos ^{2} u-\sin ^{2} u=2 \cos ^{2} u-1=1-2 \sin ^{2} u \\
\tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v} & \tan (2 u)=\frac{2 \tan u}{1-\tan ^{2} u} \\
\cos ^{2} \frac{u}{2}=\frac{1+\cos u}{2} \quad \sin ^{2} \frac{u}{2}=\frac{1-\cos u}{2} & \tan ^{2} \frac{u}{2}=\frac{1-\cos u}{1+\cos u} \\
\hline
\end{array}
$$

1. (12 pts) If $\sin \theta=-\frac{5}{8}$ and θ is in the fourth quadrant, find the exact values of all the trigonometric functions of θ. Draw a picture.
2. (12pts) Without using the calculator, find the exact values of the following trigonometric functions. Draw the unit circle and the appropriate angle to infer the values from the picture. $\cos 60^{\circ}=\quad \sin \frac{5 \pi}{4}=\quad \sec \left(-90^{\circ}\right)=\quad \tan \frac{8 \pi}{3}=$
3. (9pts) Without using the calculator, find the exact values (in radians) of the following expressions. Draw the unit circle to help you.
$\arccos \frac{\sqrt{3}}{2}=\quad \arcsin \left(-\frac{\sqrt{2}}{2}\right)=\quad \arccos (2)=\quad \arctan (-\sqrt{3})=$
4. (6pts) Find the exact value of the expressions (do not use the calculator). For one of them, you will need a picture.
$\sin (\arcsin 0.2)=\quad \arccos \left(\cos \frac{8 \pi}{5}\right)=$
5. (6pts) Convert into the other angle measure (radians or degrees). Show how you computed your number.
$63^{\circ}=$
$\frac{7 \pi}{15}$ radians $=$
6. (10pts) Apple's new headquarters building is in the shape of a ring with outer diameter 460 meters. If we refer to points on the circle via correspondence to a clock, how far would a person have to walk along the outside wall to get from a point at 1 o'clock to a point at 8 o'clock, going the long way?
7. (8pts) Use an identity (sum, difference, half- or double-angle) to find the exact value of the trigonometric function below (do not use the calculator).
$\cos 195^{\circ}=$
8. (7pts) Use your calculator to solve the equation on the interval $\left[0^{\circ}, 360^{\circ}\right.$) (answers in degrees). A picture will help.
$\cos \theta=-0.25$
9. (14pts) Solve the equation in radians.
a) Give a general formula for all solutions.
b) List all the solutions that fall in the interval $[0,2 \pi)$.
$2 \sin ^{2} \theta-\sin \theta-1=0$
10. (14pts) Solve the triangle: $a=7, c=6, A=38^{\circ}$
11. (8pts) Draw points with the following polar coordinates. Then convert them into rectangular coordinates. Give exact answers - do not use the calculator.

$$
(r, \theta)=\left(3, \frac{\pi}{6}\right) \quad(r, \theta)=\left(-4, \frac{3 \pi}{4}\right)
$$

12. (10pts) Convert the following rectangular coordinates into polar coordinates. Draw a picture to make sure you have the correct θ. For each point, give three answers in polar coordinates, at least one of which has a negative r. Give exact answers - do not use the calculator.
$(x, y)=(5 \sqrt{3},-5)$

$$
(x, y)=(-4,4)
$$

13. (10pts) A kite attached to a 60 ft string is flying so that the angle of elevation from the ground anchor to the kite is 49°. How high above the ground is the kite?
14. (11pts) To determine distances to a location C across the river, a surveyor puts poles at points A and B that are 32 meters apart. Using the poles, she is able to determine that the angle between lines of sight $A B$ and $A C$ from point A is 63° and the angle between lines of sight $B A$ and $B C$ from point B is 46°.
a) How far apart are A and C ?
b) How far apart are B and C ?

15. (13pts) Two planes leave an airport: one flies $N 12^{\circ} \mathrm{W}$ at 250 mph , and the other flies $S 37^{\circ} E$ at 300 mph . What is the distance c between the planes after two hours?

Bonus. (7pts) A circle of radius 16 meters is inscribed in a regular hexagon. Find the exact value of the perimeter of the hexagon (not a calculator approximation).

Bonus. (8pts) In a circle of radius a, the large triangle, whose bottom side is a diameter, is split into two triangles as shown.
a) Find the expression for the area of each of the two smaller triangles in terms of a and α. b) Show the areas are equal.

