Trigonometry - Exam 3

MAT 145, Spring 2017- D. Ivanšić
Name: \qquad
Show all your work!

$$
\begin{array}{|ll}
\hline \sin (u \pm v)=\sin u \cos v \pm \cos u \sin v & \sin (2 u)=2 \sin u \cos u \\
\cos (u \pm v)=\cos u \cos v \mp \sin u \sin v & \cos (2 u)=\cos ^{2} u-\sin ^{2} u=2 \cos ^{2} u-1=1-2 \sin ^{2} u \\
\tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v} & \tan (2 u)=\frac{2 \tan u}{1-\tan ^{2} u} \\
\cos ^{2} \frac{u}{2}=\frac{1+\cos u}{2} \quad \sin ^{2} \frac{u}{2}=\frac{1-\cos u}{2} & \tan ^{2} \frac{u}{2}=\frac{1-\cos u}{1+\cos u} \\
\hline
\end{array}
$$

1. (6pts) Solve the triangle: $a=8, b=3, c=4$.
2. (14pts) Solve the triangle: $b=10, c=7, B=44^{\circ}$
3. (13pts) Solve the triangle: $b=3, c=2, A=79^{\circ}$.
4. (8pts) Draw points with the following polar coordinates. Then convert them into rectangular coordinates. Give exact answers - do not use the calculator.

$$
(r, \theta)=\left(2, \frac{5 \pi}{6}\right) \quad(r, \theta)=\left(-5,-\frac{3 \pi}{4}\right)
$$

5. (10pts) Convert the following rectangular coordinates into polar coordinates. Draw a picture to make sure you have the correct θ. For each point, give three answers in polar coordinates, at least one of which has a negative r. Give exact answers - do not use the calculator.
$(x, y)=(3,-3)$

$$
(x, y)=(-2 \sqrt{3}, 2)
$$

6. (9pts) Convert to a polar equation. Answer should be solved for r.
$x^{2}+2 x y+y^{2}=5$
7. (8 pts) The vertices of a triangle are given in polar coordinates: $A=(0,0), B=\left(4, \frac{\pi}{3}\right)$, $C=\left(5, \frac{\pi}{2}\right)$.
a) Draw the triangle.
b) Find the exact area of the triangle (do not use the calculator).
8. (8pts) Use your calculator to draw an accurate graph of the polar curve $r=1+5 \cos (4 \theta)$.
9. (11pts) To determine distances to a location C across the river, a surveyor puts poles at points A and B that are 32 meters apart. Using the poles, she is able to determine that the angle between lines of sight $A B$ and $A C$ from point A is 63° and the angle between lines of sight $B A$ and $B C$ from point B is 46°.
a) How far apart are A and C ?
b) How far apart are B and C ?

10. (13pts) Two planes leave an airport: one flies $N 12^{\circ} \mathrm{W}$ at 450 mph , and the other flies $S 37^{\circ} E$ at 540 mph . What is the distance c between the planes after two hours?

Bonus. (10pts) In a circle of radius a, the large triangle, whose bottom side is a diameter, is split into two triangles as shown.
a) Find the expression for the area of each of the two smaller triangles in terms of a and α. b) Show the areas are equal.

