Trigonometry - Exam 2
MAT 145, Spring 2017- D. Ivanšić

Name: \qquad
Show all your work!

$$
\begin{array}{|ll}
\hline \sin (u \pm v)=\sin u \cos v \pm \cos u \sin v & \sin (2 u)=2 \sin u \cos u \\
\cos (u \pm v)=\cos u \cos v \mp \sin u \sin v & \cos (2 u)=\cos ^{2} u-\sin ^{2} u=2 \cos ^{2} u-1=1-2 \sin ^{2} u \\
\tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v} & \tan (2 u)=\frac{2 \tan u}{1-\tan ^{2} u} \\
\cos ^{2} \frac{u}{2}=\frac{1+\cos u}{2} & \sin ^{2} \frac{u}{2}=\frac{1-\cos u}{2}
\end{array} \tan ^{2} \frac{u}{2}=\frac{1-\cos u}{1+\cos u} .
$$

1. (16pts) Use an identity (sum, difference, half- or double-angle) to find the exact values of the trigonometric functions below (do not use the calculator).
$\sin 75^{\circ}=$
$\tan 157.5^{\circ}=$
2. (9pts) Without using the calculator, find the exact values (in radians) of the following expressions. Draw the unit circle to help you.
$\arcsin \frac{1}{2}=\quad \arccos \left(-\frac{\sqrt{2}}{2}\right)=\quad \arcsin (4)=\quad \arctan \frac{1}{\sqrt{3}}=$
3. (6pts) Find the exact value of the expressions (do not use the calculator). For one of them, you will need a picture.
$\sin (\arcsin (-0.4))=\quad \arccos \left(\cos \frac{9 \pi}{7}\right)=$
4. (7pts) Find the exact value of the expression (do not use the calculator). Draw the appropriate picture.
$\cos \left(\arctan \left(-\frac{7}{4}\right)\right)=$
5. (8pts) Use identities to simplify the following expression.
$\frac{\sin \left(\frac{\pi}{2}-\theta\right)}{\cos \theta}+\cos \left(\frac{\pi}{2}-\theta\right) \sin (-\theta)=$

Show the identities:
6. $(8 \mathrm{pts}) \tan \theta(\tan \theta+\cot \theta)=\sec ^{2} \theta$
7. (8pts) $(\sin \theta+\cos \theta)^{2}=1+\sin (2 \theta)$
8. (5pts) Solve the equation in radians (give a general formula for all solutions).
$2 \cos \theta+\sqrt{3}=0$
9. (7pts) Use your calculator to solve the equation on the interval $\left[0^{\circ}, 360^{\circ}\right.$) (answers in degrees). A picture will help.
$\cos \theta=-0.8$
10. (14pts) Solve the equation in radians.
a) Give a general formula for all solutions.
b) List all the solutions that fall in the interval $[0,2 \pi)$.
$2 \cos ^{2} \theta+\cos \theta-1=0$
11. (12pts) The two triangles in the picture are right triangles. One of them has an angle of measure θ, the other, 2θ. Find the exact value for the length of side a (do not use the calculator).

Bonus. (10pts) Develop the formula for $\cos (4 \theta)$ by using sum or double-angle identities. The final expression should only have $\sin \theta$ and $\cos \theta$ in it.

