Algebra and Trigonometry — Exam 4 MAT 150, Fall 2017 — D. Ivanšić

Name: Saul Ocean

Show all your work!

1. (5pts) If $\log_a 2 = u$ and $\log_a 3 = v$, express in terms of u and v:

$$\log_a 6 = \log_a (2.3)$$

$$= \log_a 2 + \log_a 3$$

$$= U + V$$

$$\log_a \frac{3}{8} = \log_a \frac{3}{2^3} = \log_a 3 - \log_a 2^3$$

$$= \log_a 3 - 3\log_a 2$$

$$= N - 3h$$

2. (6pts) Write as a sum and/or difference of logarithms. Express powers as factors. Simplify if possible.

$$\log_{7} \frac{\sqrt[3]{u^{4}}}{49w^{3}} = \log_{7} u^{\frac{4}{5}} - \log_{7} 49 - \log_{7} w^{3}$$

$$= \frac{4}{5} \log_{7} u - 2 - 3 \log_{7} w$$

3. (6pts) Write as a single logarithm. Simplify if possible.
$$2\ln(x^{3}y^{-2}) - 3\ln(x^{-2}y^{5}) = \lim_{x \to 0} (x^{3}y^{-2})^{2} - \lim_{x \to 0} (x^{-2}y^{5})^{3} = \lim_{x \to 0} \frac{(x^{3}y^{-2})^{2}}{(x^{-1}y^{5})^{3}}$$

$$= \lim_{x \to 0} \frac{x^{6}y^{-4}}{x^{6}y^{5}} = \lim_{x \to 0} (x^{3}y^{-2})^{2} - \lim_{x \to 0} \frac{x^{12}}{y^{19}}$$

Solve the equations.

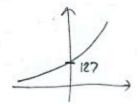
4. (6pts)
$$9^{2x-7} = \left(\frac{1}{3}\right)^{2x+6}$$

$$\left(3^{2}\right)^{2x-7} = \left(3^{-1}\right)^{2x+6}$$

$$3^{4x-14} = 3^{-2x-6}$$

$$4x-4 = -2x-6$$

$$6x = 8$$

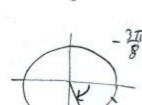

$$x = \frac{8}{6} = \frac{4}{3}$$

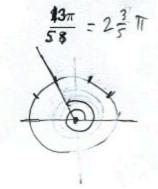
5. (8pts)
$$5^{2x+1} = 4^{-3x+4}$$
 ln

 $l_{1} 5^{2x+1} = l_{1} 4^{-3x+4}$
 $(2x+1) l_{1} 5 = (-3x+4) l_{1} 4$
 $2x l_{1} 5 + l_{1} 5 = -3x l_{1} 4 + 4 l_{1} 4$
 $2x l_{1} 5 + 3x l_{1} 4 = 4 l_{1} 4 - l_{1} 5$
 $x (2 l_{1} 5 + 3 l_{1} 4) = 4 l_{1} 4 - l_{1} 5$
 $x = \frac{4 l_{1} 4 - l_{1} 5}{2 l_{1} 5 + 3 l_{1} 4} = 0.53346$

- (12pts) The population of Expandaton was 127,000 in 2012 and 154,000 in 2017. Assume that it has grown according to the formula $P(t) = P_0 e^{kt}$.
- a) Find k and write the function that describes the population at time t years since 2012. Graph it on paper.
- b) Find the predicted population in the year 2021.

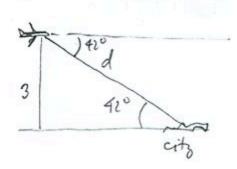
a)
$$P(t) = 127 e^{kt}$$
 (in themsends)
 $154 = 127 e^{k5}$
 $\frac{154}{127} = e^{k.5}$ | $e^{k.5}$ | $e^{$

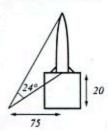

7. (10pts) If $\sin \theta = \frac{1}{5}$ and θ is in the second quadrant, find the exact values of all the trigonometric functions of θ . Draw a picture.


$$x^{2}+1^{\frac{1}{2}}5^{\frac{1}{2}}$$
 $x^{2}=24$
 $x=2\sqrt{6}$

$$S_{14}\theta = \frac{1}{5}$$
 $C_{5}C_{6}\theta = 5$
 $C_{5}C_{6}\theta = \frac{5}{5}$
 $C_{5}C_{6}\theta = \frac{5}{5}$

(6pts) Sketch angles in standard position with indicated radian measure.




9. (6pts) Convert into the other angle measure (radians or degrees). Show how you computed your number.

$$\frac{7\pi}{15} \text{ radians} = \frac{77\pi}{15} \cdot \frac{12}{11} = 84^{\circ}$$

10. (9pts) An airplane is flying at altitude 3 miles when it spots a city in the distance. If the angle of depression to the city is 42°, what is the line-of-sight (through the air) distance from the airplane to the city?



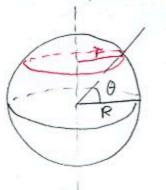
11. (14pts) From a point on the ground 75 meters away from the launch pad, you observe a rocket and note it subtends an angle of 24°. If the launch pad is 20 meters tall, how tall is the rocket?

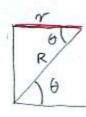
$$\frac{X+20}{75}$$
 = $ton(6+24^\circ)$
 $X+20$ = $3ton(6+24^\circ)$
 $X=75ton(38.931417^\circ)-20$
 $X=40.585302$ meters

- 12. (12pts) Our textbook has dimensions approximately 9 × 11 inches. Skillful student Fred is rotating it on his finger at 50 revolutions per minute. (His finger touches the center of the book.)
- a) What is the angular velocity of this rotation in radians per second?
- b) What is the linear velocity of the corner of the book, in inches per second?

a)
$$\omega = \frac{\theta}{t} = \frac{2\pi.50 \text{ radian}}{360 \text{ sec}} = \frac{5\pi}{3} \text{ radian}/\text{sec} = 5.235988 \text{ Wadken}$$

$$(2r)^{2} = 9 + 11^{2}$$


$$4r^{2} = 81 + 121$$


$$r^{2} = \frac{202}{4}$$

$$r^{2} = \frac{202}{4}$$

$$r^{2} = \frac{\sqrt{202}}{2}$$

Bonus. (10pts) Let θ be the latitude of a point on Earth, R the radius of the Earth. The point circles the axis of Earth's rotation on a circle of a radius r (the farther north the point, the smaller the r). Write the formula for r using R and θ .

