College Algebra — Joysheet 8 MAT 140, Fall 2017 — D. Ivanšić

Saul Ocean

Covers: 5.1-5.3

(6pts) The graph of a function f is given.

- a) Is this function one-to-one? Justify.
- b) If the function is one-to-one, find the graph
- of f^{-1} , labeling the relevant points.

2. (12pts) Let $f(x) = \frac{3x+1}{2x-5}$. Find the formula for f^{-1} . Find the ranges of f and f^{-1} .

$$y = \frac{3x11}{2x-5}$$
 $x = \frac{5y+1}{2y-3}$

$$\bar{f}(y) = \frac{5y+1}{2y-3}$$

Range of
$$f = Danon of f = \frac{3}{5} \frac{1}{5} \frac{3}{7}$$

 $can'+ han 2y-3=0 = (-20, \frac{3}{2}) \cup (\frac{3}{1}, 20)$
 $y = \frac{3}{2}$

Rong of
$$\xi^{7} = D$$
 or can of $\xi = \frac{5}{2} \times |x + \frac{5}{2}|$
Con 4 have $2x-5=0$ $=(-\infty,\frac{5}{2})\cup(\frac{5}{2},\infty)$
 $x=\frac{5}{2}$

(8pts) Evaluate without using the calculator:

$$\log_4 64 = 3$$

$$\log_2 \frac{1}{32} = -5$$

$$2^{?} = \frac{1}{52} = \frac{1}{2^{5}} = 2^{5}$$

$$\log_2 \frac{1}{32} = -5 \qquad \log_{125} 25 = \frac{2}{3} \qquad \log_{\sqrt{6}} b^3 = 6$$

$$2^2 = \frac{1}{52} = \frac{1}{2^5} = 2^5 \qquad |25^2 = 25 = 3 | |25^2 = 25^2 = 25 | |25^2 = 25^2 = 25 | |25^2 = 25^2 = 25 | |25^2 = 25^2 = 25 | |25^2 = 25^2 = 25 | |25^2 = 25^2 = 25 | |25^2 = 25^2 = 25^2 = 25 | |25^2 = 25^2$$

4. (4pts) Use the change-of-base formula and your calculator to find log₇ 0.27 with accuracy 6 decimal places. Show how you obtained your number.

- 5. (12pts) Investigate the effect of increased frequency of compounding: for a deposit of \$2,000 and annual interest rate of 3.24%, calculate the amount in the account after 1 year for the frequencies of compounding below.
- a) Write the general formula for the amount, replacing the variables by numbers, if known.
- b) Use the table feature on your calculator to quickly compute amounts after 1 year.
- c) Does compounding more often make a big difference?

Frequency: every	n	Amount after 1 year	(a) $A = 2000 \left(1 + \frac{0.0329}{h}\right)$
year	1	2064.80	0.0224 15
quarter	4	2065.59	= 2000 (1+ 0,0324)"
month	12	2065,77	
day	365	2065.86	c) Part compounding monthly, it melces
hour	365.24	2 065. 86	monthly it mulces
second	365.24,3600	2065,86	very little or no differen

6. (3pts) Find the domain of $f(x) = \log_3(4x + 9)$.

- 7. (8pts) An object weighing 500 kilograms moving at velocity v meters per second has kinetic energy $E(v) = 250v^2$ Joules.
- a) Determine the kinetic energy of the object if it is traveling at 10 and 20 meters per second.
- b) Find a formula for the inverse function and explain what it represents.
- c) Determine the velocity of the object if its kinetic energy is 60,000 and 120,000 Joules.

a)
$$E(10) = 250 \cdot 100 = 25000$$
 Jonles

 $E(10) = 250 \cdot 400 = 100000$ Jonles

 $E(10) = 250 \cdot 400 = 100000$ Jonles

 $V(120,000) = \sqrt{\frac{60000}{250}} = \sqrt{\frac{480}{250}} = 4\sqrt{30} = \sqrt{\frac{120000}{250}} = \sqrt{\frac{1200000}{250}} = \sqrt{\frac{120000}{250}} = \sqrt{\frac{1200000}{250}} = \sqrt{\frac{120000}{2500}} = \sqrt{\frac{120000$

8. (7pts) Using transformations, draw the graph of $f(x) = 4 - e^x$. Explain how you transform the graph of a basic function in order to get the graph of f. Show at least one point on the graph, and asymptotes to the graph, if any.

