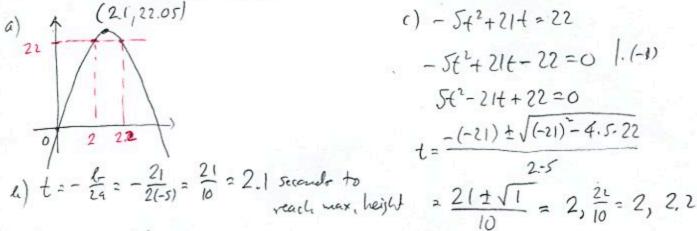
College Algebra — Joysheet 7 MAT 140, Fall 2017 — D. Ivanšić

Name: Saul Ocean
Covers: 3.3, 3.4, 3.5 Show all your work!

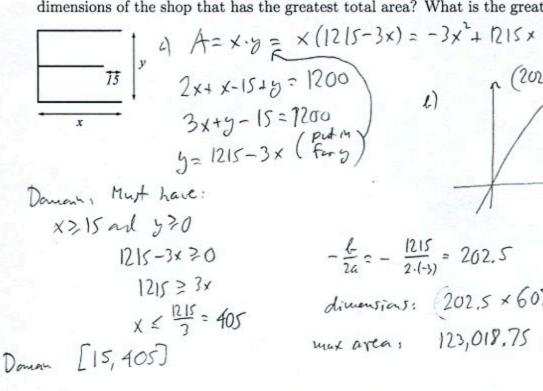
1. (4pts) Solve the equation.

$$|3x-1|=7$$
 $3x-1=7$ $3x-1=7$ $3x=8$ $3x=6$ $x=\frac{8}{3}$ or $x=-2$


2. (12pts) Solve the inequalities. Draw your solution and write it in interval form.

$$|x-5| \ge 2$$
 $|2x+9| < 3$ $|2x-(-9)| < 3$ $|2x$

Solve the equations:


3.
$$(8pts) \frac{x+4}{x+3} + \frac{x^2-6x+43}{x^2+x-6} - \frac{x+5}{x-2} = 0$$
 | $(x+1)(x-1)$ 4. $(8pts) x+3 = 2x+\sqrt{29-5x}$ | $-2x$ | $(x+3)(x-2)$ | $(x+$

- (14pts) A ball is thrown upwards from the ground with initial velocity 21 meters per second. Its height in meters after t seconds is given by $s(t) = -5t^2 + 21t$.
- a) Sketch the graph of the height function.
- b) When does the ball reach its greatest height, and what is that height?
- c) When is the ball at height 22 meters?

c)
$$-5t^{2}+21t=22$$

 $-5t^{2}+21t-22=0$ | .(-1)
 $5t^{2}-21t+22=0$
 $t=\frac{-(-21)\pm\sqrt{(-21)}-4.5.22}{2.5}$
 $t=\frac{21\pm\sqrt{1}}{10}=2,\frac{21}{10}=2,2.2$

- (14pts) Truck mechanic Igor wishes to build a repair shop with two side-by-side bays separated by a shorter wall (see picture). Igor has enough money to build 1200 feet of walls, and he wants to build a shop with maximal area.
- a) Express the total area of the shop as a function of one of the sides of the rectangle. What is the domain of this function?
- b) Sketch the graph of the area function in order to find the maximum (no need for the graphing calculator — you should already know what the graph looks like). What are the dimensions of the shop that has the greatest total area? What is the greatest area possible?

$$-\frac{L}{2a} = -\frac{1215}{2\cdot(-5)} = 202.5$$
dimensions: (202.5×607.5) feet

mux area: $(123,018.75)$ square feet