College Algebra — Joysheet 5 MAT 140, Fall 2017 — D. Ivanšić

Name: Soul Ocan

Covers: 2.4, 2.5

Show all your work!

1. (21pts) For the following functions:

a) determine algebraically whether they are odd, even, or neither

b) use the calculator to draw their graphs here and verify your conclusions by stating symmetry.

$$f(x) = x^{5} - 7x^{3} + 4x$$

$$\mathcal{L}(-x) = (-x)^{5} - 7(-x)^{3} + 4(-x)$$

$$= -x^{5} - 7(-x^{3}) - 4x$$

$$= -x^{5} + 7x^{3} - 4x$$

$$= -\mathcal{L}(x), \text{ so odd}$$

$$g(x) = x^{2} - 5|x| - 7$$

$$g(-x)^{2} - (-x)^{2} - 5|-x|-7$$

$$= x^{2} - 5|x|-7$$

$$= g(x)$$

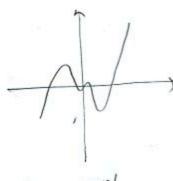
$$= g(x)$$

$$= (-x)^{2} - 5|x|-7$$

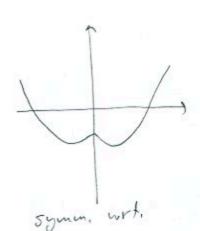
$$= g(x)$$

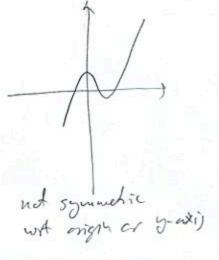
$$= g(x)$$

$$= g(x)$$

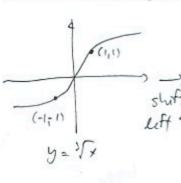

$$h(x) = x^3 - 3x^2 + 2$$

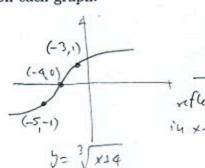
$$\lim_{x \to \infty} (-x)^2 (-x)^3 - 3(-x)^3 + 2$$

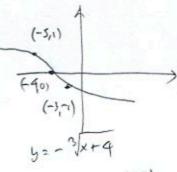

$$= -x^3 - 3x^2 + 2$$

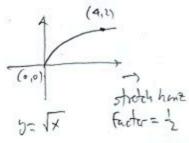

$$= -x^3 - 3x^2 + 2$$

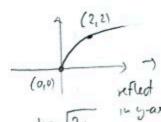
$$= -x^3 - 3x^3 + 2$$

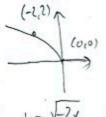


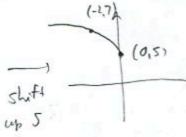

symu. wrd






2. (16pts) Using transformations, draw the graphs of $f(x) = -\sqrt[3]{x+4}$ and $g(x) = 5+\sqrt{-2x}$. Explain how you transform graphs of basic functions in order to get the graphs of f and g. Indicate at least two points on each graph.





- 3. (10pts) Write the equation for the function whose graph has the following characteristics:
- a) shape of y = |x|, shifted up 2 units
- b) shape of $y = \frac{1}{x}$ stretched vertically by factor 3, then shifted right 4 units
- c) shape of $y = x^3$, stretched horizontally by factor 4, then reflected about the y-axis, then shifted left 1 unit.

a)
$$5 = |x|+2$$

L) $5 = \frac{1}{x} \mapsto 5 = 3 \cdot \frac{1}{x} \mapsto 5 = (\frac{1}{4}(-x))^3 \mapsto 5 = (-\frac{1}{4}(x+1))^3 = (-\frac{1}{4}x)^3$

4. (13pts) The graph of f(x) is drawn below. On three separate graphs, sketch the graphs of the functions f(x) - 2, -f(2x) and 2f(x-3) and label all the relevant points.

