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Sections 2.7, 3.1–3.3, 4.1

Definitions Cantor set (2.7)
Cantor-Lebesgue function (2.7)
Measurable function (3.1)
Characteristic function χA (3.2)
Simple function (3.2)
Riemann sum, Riemann integrability via Riemann sums (B&S 7.1)
Upper, lower Darboux sum (4.1)
Upper, lower Riemann integral (4.1)
Riemann integrable function via Darboux sums (4.1)

Theorems Cantor set is closed, countable and has measure 0 (Prop. 2.19)
Cantor-Lebesgue function is increasing and continuous (Prop. 2.20)
Continuous bijection ψ maps a set of measure 0 to a set of nonzero measure,

maps a measurable set to a nonmeasurable set (Prop. 2.21)
There exists a measurable set that is not Borel (Prop. 2.22)
Equivalence of measurable function definitions (Prop. 3.1)
Characteristic function χA is measurable iff A is measurable (3.2)
f is measurable iff f−1(U) is open for every open set U (Prop. 3.2)
f is measurable iff f−1(A) is open for every Borel set A (Prob. 3.7)
Continuous functions on measurable domains are measurable (Prop. 3.3)
Monotone functions on intervals are measurable (Prop. 3.4)
Function is measurable iff its restrictions are measurable (Prop. 3.5)
Lin. comb., products of measurable functions are measurable (Theorem 3.6)
Min, max, | |, +, − of measurable functions are measurable (Prop. 3.8)
f continuous, g measurable =⇒ f ◦ g is measurable (Prop. 3.7)
Composite of measurable functions need not be measurable (3.1)
Convergent sequence of measurable converges to measurable (Prop 3.9)
Simple Approximation Lemma (3.2)
f is measurable iff f is a limit of simple functions: Simple Approx. Thm. (3.2)
Littlewood’s three principles (3.3)
A measurable set is nearly a finite union of open intervals (Theorem 2.12)
Pointwise convergence is nearly uniform: Egoroff’s Theorem (3.3)
Every measurable function is nearly continuous: Lusin’s Theorem (3.3)
Equiv. of Riemann integrability via Darboux or Riemann sums (Theorem 4.0)

Proofs Cantor set is closed, countable and has measure zero (Prop. 2.19)
Simple Approximation Lemma (3.2)
Lemma 3.10
Every simple function is nearly continuous (Prop. 3.11)
Existence of a Riemann-nonintegrable function (4.1)
Examples where Riemann integral fails pointwise convergence (4.1)
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Sections 4.2–4.6

Definitions Simple function and integral of a simple function (4.2)
Upper, lower integral of a measurable function over a set of finite measure (4.2)
Integral of a measurable function over a set of finite measure (4.2)
Integral of a nonnegative function (4.3)
Integrability of a nonnegative function (4.3)
f+, f−, integrability of a general function (4.4)
Uniform integrability of a family of functions (4.6)

Theorems A Riemann integrable function is Lebesgue integrable (Theorem 4.3)
Linearity and Monotonicity of Integration (Prop. 4.2, Thms. 4.5, 4.10, 4.17)
Additivity of Integral (Coro. 4.6, Theorem 4.11, Coro. 4.18)
|
∫
E
f | ≤

∫
E
|f | (Coro. 4.7, Prop. 4.16)

Uniform convergence theorem (Prop. 4.8)
Bounded Convergence Theorem (4.2)
Chebyshev’s Inequality (4.3)
f ≥ 0 and

∫
E
f = 0 =⇒ f = 0 ae on E (Prop. 4.9)

Fatou’s Lemma (4.3)
Monotone Convergence Theorem (4.3)
Lebesgue Dominated Convergence Theorem (4.4)
General Lebesgue Dominated Convergence Theorem (Theorem 4.19)
Countable Additivity of Integration (Theorem 4.20)
Continuity of Integration (Theorem 4.21)
A finite collection of integrable functions is uniformly integrable (Prop. 4.23, 4.24)
Vitali Convergence Theorem (4.6)
Theorem 4.26

Proofs Bounded Convergence Theorem (4.2)
Additivity of Integral (Coro. 4.6, Theorem 4.11, Coro. 4.18)
Chebyshev’s Inequality (4.3)
f ≥ 0 and

∫
E
f = 0 =⇒ f = 0 ae on E (Prop. 4.9)

Fatou’s Lemma (4.3)
Examples where Fatou’s Lemma has strict inequality
Examples of nonintegrable functions for which limn→∞

∫ n

1
f exists.
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Sections 7.1–7.3

Definitions Essential upper bound, essentially bounded (7.1)
The spaces LpE and lp, p ∈ [1,∞] (7.1)
Norm on a linear space (7.1)
The space C[a, b] and its norm || ||max (7.1)
The norm || ||p on spaces LpE and lp (7.2)
The function f ∗ (Theorem 7.1)
Normed convergence of a sequence (7.3)
Cauchy sequence in a normed space (7.3)
Banach space (7.3)
Rapidly Cauchy sequence (7.3)

Theorems |a+ b|p ≤ 2p(|a|p + |b|p) (7.2)

Young’s Inequality: ab ≤ ap

p
+
bq

q
(7.2)

Theorem 7.1, including Holder’s inequality:
∫
E
|f · g| ≤ ||f ||p · ||g||q

Minkowski’s inequality: ||f + g||p ≤ ||f ||p + ||g||p (7.2)
F bounded in LpE is uniformly integrable (Coro. 7.2)
mE <∞ and 1 ≤ p1 < p2 ≤ ∞ implies Lp2E ⊂ Lp1E, ||f ||p1 ≤ c||f ||p2 (Coro. 7.3)
Convergent sequence is Cauchy (Prop 7.4)
Cauchy sequence is convergent if it has a convergent subsequence (Prop. 7.4)
Every rapidly Cauchy sequence is Cauchy (Prop. 7.5)
Every Cauchy sequence has a rapidly Cauchy subsequence (Prop. 7.5)
Every rapidly Cauchy sequence in LpE converges wrt norm and pointwise (Thm 7.6)
Riesz-Fischer Theorem: LpE is a Banach space (7.3)
Every norm-convergent sequence in LpE

has a subsequence that converges pointwise ae on E (7.3)
For fn, f ∈ LpE, if fn → f pointwise ae on E, then

fn → f wrt norm iff ||fn||p → ||f ||p (Theorem 7.7)

Proofs Young’s inequality (7.2)
Holder’s inequality (Theorem 7.1)
F bounded in LpE is uniformly integrable (Coro. 7.2)
Examples of functions in Lp1E, but not in Lp2E (7.2)
Every rapidly Cauchy sequence is Cauchy (Prop. 7.5)
Every Cauchy sequence has a rapidly Cauchy subsequence (Prop. 7.5)
Examples of functions in LpE, that converge pointwise, but not wrt norm (7.3)


