Sections 2.7, 3.1–3.3, 4.1

Definitions	Cantor set (2.7)
	Cantor-Lebesgue function (2.7)
	Measurable function (3.1)
	Characteristic function χ_A (3.2)
	Simple function (3.2)
	Riemann sum, Riemann integrability via Riemann sums (B&S 7.1)
	Upper lower Darboux sum (4.1)
	Upper, lower Biemann integral (4.1)
	Riemann integrable function via Darboux sums (4.1)
Theorems	Cantor set is closed, countable and has measure 0 (Prop. 2.19)
	Cantor-Lebesgue function is increasing and continuous (Prop. 2.20)
	Continuous bijection ψ maps a set of measure 0 to a set of nonzero measure.
	maps a measurable set to a nonmeasurable set (Prop. 2.21)
	There exists a measurable set that is not Borel (Prop. 2.22)
	Equivalence of measurable function definitions (Prop. 3.1)
	Characteristic function v_A is measurable iff A is measurable (3.2)
	f is measurable iff $f^{-1}(U)$ is open for every open set U (Prop. 3.2)
	f is measurable iff $f^{-1}(A)$ is open for every Borel set A (Prob. 3.7)
	Continuous functions on measurable domains are measurable (Prop. 3.3)
	Monotone functions on intervals are measurable (Prop. 3.4)
	Function is measurable iff its restrictions are measurable (Prop. 3.5)
	Lin comb products of measurable functions are measurable (Theorem 3.6)
	Min max $ + -$ of measurable functions are measurable (Prop. 3.8)
	f continuous a measurable $\rightarrow f \circ a$ is measurable (Prop. 3.7)
	Composite of measurable functions need not be measurable (3.1)
	Convergent sequence of measurable converges to measurable (Drop 3.0)
	Simple Approximation Lomma (3.2)
	f is measurable iff f is a limit of simple functions: Simple Approx. The (3.2)
	f is inclusionable in f is a mine of simple functions. Simple Approx. Thin. (5.2) Littlewood's three principles (3.3)
	A measurable set is nearly a finite union of open intervals (Theorem 2.12)
	Pointwise convergence is nearly uniform: Egoroff's Theorem (3.3)
	Fyory measurable function is nearly continuous: Lusin's Theorem (3.3)
	Every measurable function is hearly continuous. Lusin's Theorem (5.3)
	Equiv. of Riemann integrability via Darboux of Riemann sums (Theorem 4.0)
Proofs	Cantor set is closed, countable and has measure zero (Prop. 2.19)
110015	Simple Approximation Lemma (3.2)
	Lemma 3.10
	Every simple function is nearly continuous (Prop. 3.11)
	Existence of a Riemann-nonintegrable function (4.1)
	Examples where Riemann integral fails pointwise convergence (4.1)
	Examples where Riemann integral fails pointwise convergence (4.1)

Test Knowledge

Sections 4.2–4.6

Definitions	Simple function and integral of a simple function (4.2) Upper, lower integral of a measurable function over a set of finite measure (4.2) Integral of a measurable function over a set of finite measure (4.2) Integral of a nonnegative function (4.3) Integrability of a nonnegative function (4.3) f^+, f^- , integrability of a general function (4.4) Uniform integrability of a family of functions (4.6)
Theorems	A Riemann integrable function is Lebesgue integrable (Theorem 4.3) Linearity and Monotonicity of Integration (Prop. 4.2, Thms. 4.5, 4.10, 4.17) Additivity of Integral (Coro. 4.6, Theorem 4.11, Coro. 4.18) $ \int_E f \leq \int_E f $ (Coro. 4.7, Prop. 4.16) Uniform convergence theorem (Prop. 4.8) Bounded Convergence Theorem (4.2) Chebyshev's Inequality (4.3) $f \geq 0$ and $\int_E f = 0 \implies f = 0$ as on E (Prop. 4.9) Fatou's Lemma (4.3) Monotone Convergence Theorem (4.3) Lebesgue Dominated Convergence Theorem (4.4) General Lebesgue Dominated Convergence Theorem (Theorem 4.19) Countable Additivity of Integration (Theorem 4.20) Continuity of Integration (Theorem 4.21) A finite collection of integrable functions is uniformly integrable (Prop. 4.23, 4.24) Vitali Convergence Theorem (4.6) Theorem 4.26
Proofs	Bounded Convergence Theorem (4.2) Additivity of Integral (Coro. 4.6, Theorem 4.11, Coro. 4.18) Chebyshev's Inequality (4.3) $f \ge 0$ and $\int_E f = 0 \implies f = 0$ as on E (Prop. 4.9) Fatou's Lemma (4.3) Examples where Fatou's Lemma has strict inequality Examples of nonintegrable functions for which $\lim_{n\to\infty} \int_1^n f$ exists.

Test Knowledge

Sections 7.1–7.3

Definitions	Essential upper bound, essentially bounded (7.1)
	The spaces $L^p E$ and l^p , $p \in [1, \infty]$ (7.1)
	Norm on a linear space (7.1)
	The space $C[a, b]$ and its norm $ _{\max}$ (7.1)
	The norm $ _p$ on spaces $L^p E$ and l^p (7.2)
	The function f^* (Theorem 7.1)
	Normed convergence of a sequence (7.3)
	Cauchy sequence in a normed space (7.3)
	Banach space (7.3)
	Rapidly Cauchy sequence (7.3)
	Telephany content for the second se
Theorems	$ a+b ^{p} \le 2^{p} (a ^{p} + b ^{p}) $ (7.2)
	Voung's Inequality: $ab \leq a^p + b^q$ (7.2)
	Total s mequality: $ab \leq \frac{-}{p} + \frac{-}{q} (1.2)$
	Theorem 7.1, including Holder's inequality: $\int_E f \cdot g \leq f _p \cdot g _q$
	Minkowski's inequality: $ f + g _p \le f _p + g _p$ (7.2)
	\mathcal{F} bounded in $L^p E$ is uniformly integrable (Coro. 7.2)
	$mE < \infty$ and $1 \le p_1 < p_2 \le \infty$ implies $L^{p_2}E \subset L^{p_1}E$, $ f _{p_1} \le c f _{p_2}$ (Coro. 7.3)
	Convergent sequence is Cauchy (Prop 7.4)
	Cauchy sequence is convergent if it has a convergent subsequence (Prop. 7.4)
	Every rapidly Cauchy sequence is Cauchy (Prop. 7.5)
	Every Cauchy sequence has a rapidly Cauchy subsequence (Prop. 7.5)
	Every rapidly Cauchy sequence in $L^p E$ converges wrt norm and pointwise (Thm 7.6)
	Riesz-Fischer Theorem: $L^p E$ is a Banach space (7.3)
	Every norm-convergent sequence in $L^p E$
	has a subsequence that converges pointwise as on $E(7.3)$
	For $f_n, f \in L^p E$, if $f_n \to f$ pointwise as on E, then
	$f_n \to f$ wrt norm iff $ f_n _p \to f _p$ (Theorem 7.7)
Proofs	Voung's inequality (7.2)
110015	Holdor's inequality (Theorem 7.1)
	\mathcal{F} bounded in $L^p F$ is uniformly integrable (Core. 7.2)
	From plag of functions in $L^{p_1}E$ but not in $L^{p_2}E(7,2)$
	Examples of functions in $L^{-}L$, but not in $L^{-}L$ (7.2) Event repidly Cauchy acqueres is Cauchy (Prop. 7.5)
	Every rapidly Gauchy sequence is Gauchy (Prop. 7.5)
	Every Cauchy sequence has a rapidly Cauchy subsequence (Prop. (.5)) Examples of functions in $L^{n}E$ that concerns pointwise, but not (7.2)
	Examples of functions in $L^{r}E$, that converge pointwise, but not wrt norm (7.3)