
Real Function Theory I — Exam 1
MAT 726, Spring 2016 — D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C.
If you do more than five, best five will be counted.

Theory 1. (3pts) State one of the four equivalent definitions of a measurable function.

Theory 2. (3pts) State the Simple Approximation Theorem.

Theory 3. (3pts) Define a lower Darboux sum.

Type A problems (5pts each)

A1. Let f : E → R be a defined on a measurable set E so that E = F ∪G, where F and G
are disjoint, mG = 0 and f |F : F → R is continuous. Show that f : E → R is measurable.

A2. Given the function f : (0, 1]→ R, f(x) = 1
x
, construct a sequence of step-functions that

converges to f pointwise. A good picture with an explanation will suffice. (The existence of
such a sequence is warranted by the Simple Approximation Theorem).

A3. Let f : E → R be bounded and E measurable. Use the Simple Approximation Lemma
to show there exists a sequence of functions fn : E → R such that fn → f uniformly on E.

A4. Let f : E → R be a simple function, g : R → R any function. Show that g ◦ f is a
simple function. (Don’t forget the part about measurability.)

A5. Let f : [a, b] → R be bounded. Is there an upper bound for all upper Darboux sums
U(f,P), or a lower bound for all lower Darboux sums L(f,P)? Justify.

Type B problems (8pts each)

B1. Show that the Cantor set C has the property: for every x, y ∈ C, x < y, there exists a
t /∈ C such that x < t < y . (Because of this, we say that C is totally disconnected.)

B2. Let f : E → R, where E is measurable, be a function such that f−1([a, b]) is a
measurable set for every a, b ∈ R, a < b. Show that f is a measurable function.

B3. Let fn : E → R be a sequence of measurable functions. Show that the function sup fn
is measurable.

B4. Let fn : [0, 1] → R be defined by fn(x) =

{
nx, if x ∈ [0, 1

n
]

1, if x ∈ ( 1
n
, 1]

. Explain why fn → f

pointwise on [0, 1], but not uniformly (what is f?). Given ε, determine the closed set F from
Egoroff’s theorem on which fn → f uniformly on F , where m([0, 1]−F ) < ε. Good pictures
with explanations will suffice.

B5. Let C be the Cantor set, and let f : [0, 1]→ R be defined by f(x) =

{
x, if x /∈ C
0, if x ∈ C .

Show that f is a measurable function, and, given ε, determine the closed set F whose
existence is guaranteed by Lusin’s theorem, such that m([0, 1]−F ) < ε and f |F is continuous.

B6. Prove that a bounded function f : [a, b] → R is Riemann-integrable if and only if for
every ε > 0, there exists a partition P of [a, b] such that U(f,P)− L(f,P) < ε.



Type C problems (12pts each)

C1. Let {qn | n ∈ N} be an enumeration of rational numbers in [0, 1] and let an be a
sequence whose limit is L and for which |an| ≤ M , for all n ∈ N. Show that the function

f : [0, 1]→ R defined by f(x) =

{
an, if x = qn
L, if x /∈ Q ∩ [0, 1]

is Riemann-integrable by following

the steps:
a) Given ε > 0, show there exists an n0 ∈ N such that |an − L| < ε and 4M

n
< ε for all

n ≥ n0.
b) For an n ≥ n0, consider the partitition P of [0, 1] consisting of n2 equal-width subintervals.
Show that in at most 2n of those subintervals we have Mi−mi ≤ 2M , and that Mi−mi ≤ 2ε
holds for the rest of the subintervals. Use this to show that U(f,P)− L(f,P) < 3ε.
c) Conclude that f is Riemann-integrable.
(Note: Thomae’s function is a special case of this one.)
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Name:
Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C.
If you do more than five, best five will be counted.

Theory 1. (3pts) Let f : E → R, f ≥ 0. Define the integral of a nonnegative function.

Theory 2. (3pts) State Fatou’s Lemma.

Theory 3. (3pts) State the Lebesgue Dominated Convergence Theorem.

Type A problems (5pts each)

A1. Determine if the function f : [1,∞) → R, f(x) = 1
x3 is integrable over [1,∞). If it is,

determine
∫
[1,∞)

f . Justify your work with theory.

A2. Give an example of a sequence of functions fn : E → R such that fn → f pointwise
on E, but

∫
E
fn does not converge to

∫
E
f .

A3. Give a counterexample to the Bounded Convergence Theorem if we remove the as-
sumption that mE < ∞, that is, give an example of a sequence of functions fn : E → R,
each with finite support, such that |fn| < M for all n ∈ N, but

∫
E
fn does not converge to∫

E
f .

A4. Suppose fn : E → R, n ∈ N, f : E → R are all integrable over E and that fn → f
pointwise on E. Show that if

∫
E
|fn − f | → 0, then

∫
E
fn →

∫
E
f .

A5. Show that countable additivity of integration holds if f ≥ 0, without the assumption
that f is integrable.

A6. Let F and G be two uniformly integrable families of functions f : E → R. Let α, β ∈ R
and define H = {αf + βg | f ∈ F , g ∈ G}. Show that the family of functions H is uniformly
integrable.

Type B problems (8pts each)

B1. Let f : [1,∞)→ R, f(x) = 1
n2 for x ∈ [n, n+ 1

2
), and f(x) = − 1

3n2 , for x ∈ [n+ 1
2
, n+1),

for every n ∈ N. Determine whether f is integrable and, if it is, find its integral (expressed
as a sum of a series). Justify your work with theory.

B2. Let f : E → R, f ≥ 0 be integrable. Given ε > 0, show there exists a simple function
φ of finite support, 0 ≤ φ ≤ f , such that

∫
E
f −

∫
E
φ < ε.

B3. Suppose fn : E → R, fn ≥ 0 on E, n ∈ N, is a sequence of functions. Show the
generalized Fatou Lemma:

∫
E

lim inf fn ≤ lim inf
∫
E
fn.

B4. Suppose fn : E → R, fn ≥ 0 on E, n ∈ N, is a decreasing sequence of functions that
converges pointwise to f : E → R. If f1 is integrable, show that

∫
E
fn →

∫
E
f . Give an

example where the conclusion does not hold if f1 is not integrable.



B5. Give an example where countable additivity of integration fails, if f is not assumed to
be integrable.

B6. Let f : E → R be integrable. Show that f 2 is integrable, where f 2(x) = (f(x))2.
(Hint: start with {x ∈ E | |f(x)| > 1}, apply Chebyshev’s inequality, and then additivity
over domains.)

Type C problems (12pts each)

C1. Let F be a uniformly integrable family of functions f : E → R, and let g : E → R be
a measurable function, and let H = {fg | f ∈ F}.
a) If g is bounded, show that H is uniformly integrable.
b) If g is integrable over E, does it follow that H is uniformly integrable?

C2. Let a bounded function f : E → R, mE < ∞, be integrable. The definition of
integrability in this case does not assume that f is measurable. Show that f is measurable
by using these steps:
a) Show there exist simple functions φn, ψn : E → R such that φn ≤ f ≤ ψn on E and∫
E

(ψn − φn) < 1
22n

, for every n ∈ N.
b) Define Emn = {x ∈ E | ψn(x) − φn(x) > m

2n
} and Fm = ∪n∈NEmn. Use Chebyshev’s

inequality and countable additivity to show that m(Emn) < 1
2nm

and m(Fm) < 1
m

.
c) Show that if x ∈ F c

m, then ψn(x)− φn(x)→ 0, so ψn(x), φn(x)→ f(x).
d) Observe that Fm is a descending sequence and show that ψn − φn → 0 ae on E.
e) Conclude that f is measurable function as the limit ae of simple, hence measurable,
functions.
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Name:
Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C.
If you do more than five, best five will be counted.

Theory 1. (3pts) If E is measurable, define the set LpE.

Theory 2. (3pts) State Holder’s inequality, along with the the statement about f ∗.

Theory 3. (3pts) Define a Cauchy sequence in a normed linear space.

Type A problems (5pts each)

A1. On C[a, b] define ||f ||1 =
∫
[a,b]
|f |. Show that || ||1 is a norm.

A2. For every p ∈ [1,∞], give an example of a function f ∈ Lp[2,∞) such that f(x) > 0
for all x ∈ [2,∞).

A3. Give an example of a function that is in L3(0, 1), but is not in L5(0, 1).

A4. If f, g ∈ LpE, does it follow that the product fg is in LpE?

A5. Let E be measurable, mE <∞ and S ⊂ L1E be the subspace of simple functions with
finite support. Is S a Banach space with respect to || ||1?

A6. Let f ∈ Lp1E, and let f be bounded. If p2 > p1, show that f ∈ Lp2E. (This statement
is different from the similar statement we had that assumed mE < ∞, but did not assume
that f was bounded. Here, mE may be infinite. Don’t do anything hard: this one needs
only a little algebra.)

Type B problems (8pts each)

B1. Prove Holder’s inequality for three functions: let p, q, r ∈ (1,∞) such that 1
p

+ 1
q
+ 1

r
= 1.

If f ∈ LpE, g ∈ LqE and h ∈ LrE, then
∫
E
|fgh| ≤ ||f ||p||g||q||h||r. (Start by using Holder’s

inequality on functions fg and h. First show that fg ∈ Lp′E, where 1
p′

= 1
p

+ 1
q
.)

B2. Let Pn be the linear space of polynomials of degree ≤ n, and b0, . . . , bn a collection of
n+ 1 distinct real numbers. Show that the functional || || : Pn → R is a norm on Pn, where
||f || = |f(b0)|+ |f(b1)|+ · · ·+ |f(bn)|.

B3. Give an example of a convergent sequence {an | n ∈ N} of real numbers so that
there does not exist a convergent series

∑
εn satisfying |ak − ak+1| ≤ εk for every k ∈ N.

(Your sequence cannot be monotone, since in this case convergence of {an} is equivalent to
convergence of the series

∑
|ak − ak+1|, in which case you could use εk = |ak − ak+1|.)

B4. Let mE < ∞ and 1 ≤ p1 < p2 ≤ ∞. Corollary 7.3 states that for an f ∈ Lp2E, there
is a constant c > 0 such that ||f ||p1 ≤ c||f ||p2 . Show that there is no constant c satisfying

||f ||p2 ≤ c||f ||p1 for all f ∈ Lp2E, by examining the family of functions

{
1

x
α
p2

| 0 < α < 1

}
,

on E = (0, 1].



B5. Let fn → f pointwise on E, where 0 ≤ fn ≤ f on E and f ∈ LpE. Show that fn ∈ LpE
for every n ∈ N, and that fn → f in LpE.

B6. Show that every Cauchy sequence has a rapidly Cauchy subsequence.

Type C problems (12pts each)

C1. Let C ⊂ l∞ be the subspace of all sequences that converge to a real number. Show that
this is a Banach space with the norm || ||∞.


