Real Function Theory I - Exam 1
MAT 726, Spring 2016 - D. Ivanšić

Name:

Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C. If you do more than five, best five will be counted.

Theory 1. (3pts) State one of the four equivalent definitions of a measurable function.
Theory 2. (3pts) State the Simple Approximation Theorem.
Theory 3. (3pts) Define a lower Darboux sum.

Type A problems (5pts each)

A1. Let $f: E \rightarrow \mathbf{R}$ be a defined on a measurable set E so that $E=F \cup G$, where F and G are disjoint, $m G=0$ and $\left.f\right|_{F}: F \rightarrow \mathbf{R}$ is continuous. Show that $f: E \rightarrow \mathbf{R}$ is measurable.
A2. Given the function $f:(0,1] \rightarrow \mathbf{R}, f(x)=\frac{1}{x}$, construct a sequence of step-functions that converges to f pointwise. A good picture with an explanation will suffice. (The existence of such a sequence is warranted by the Simple Approximation Theorem).

A3. Let $f: E \rightarrow \mathbf{R}$ be bounded and E measurable. Use the Simple Approximation Lemma to show there exists a sequence of functions $f_{n}: E \rightarrow \mathbf{R}$ such that $f_{n} \rightarrow f$ uniformly on E.

A4. Let $f: E \rightarrow \mathbf{R}$ be a simple function, $g: \mathbf{R} \rightarrow \mathbf{R}$ any function. Show that $g \circ f$ is a simple function. (Don't forget the part about measurability.)
A5. Let $f:[a, b] \rightarrow \mathbf{R}$ be bounded. Is there an upper bound for all upper Darboux sums $U(f, \mathcal{P})$, or a lower bound for all lower Darboux sums $L(f, \mathcal{P})$? Justify.

Type B problems (8pts Each)

B1. Show that the Cantor set C has the property: for every $x, y \in C, x<y$, there exists a $t \notin C$ such that $x<t<y$. (Because of this, we say that C is totally disconnected.)
B2. Let $f: E \rightarrow \mathbf{R}$, where E is measurable, be a function such that $f^{-1}([a, b])$ is a measurable set for every $a, b \in \mathbf{R}, a<b$. Show that f is a measurable function.

B3. Let $f_{n}: E \rightarrow \mathbf{R}$ be a sequence of measurable functions. Show that the function $\sup f_{n}$ is measurable.
B4. Let $f_{n}:[0,1] \rightarrow \mathbf{R}$ be defined by $f_{n}(x)=\left\{\begin{array}{ll}n x, & \text { if } x \in\left[0, \frac{1}{n}\right] \\ 1, & \text { if } x \in\left(\frac{1}{n}, 1\right]\end{array}\right.$. Explain why $f_{n} \rightarrow f$ pointwise on $[0,1]$, but not uniformly (what is f ?). Given ϵ, determine the closed set F from Egoroff's theorem on which $f_{n} \rightarrow f$ uniformly on F, where $m([0,1]-F)<\epsilon$. Good pictures with explanations will suffice.
B5. Let C be the Cantor set, and let $f:[0,1] \rightarrow \mathbf{R}$ be defined by $f(x)=\left\{\begin{array}{ll}x, & \text { if } x \notin C \\ 0, & \text { if } x \in C\end{array}\right.$. Show that f is a measurable function, and, given ϵ, determine the closed set F whose existence is guaranteed by Lusin's theorem, such that $m([0,1]-F)<\epsilon$ and $\left.f\right|_{F}$ is continuous.
B6. Prove that a bounded function $f:[a, b] \rightarrow \mathbf{R}$ is Riemann-integrable if and only if for every $\epsilon>0$, there exists a partition \mathcal{P} of $[a, b]$ such that $U(f, \mathcal{P})-L(f, \mathcal{P})<\epsilon$.

C1. Let $\left\{q_{n} \mid n \in \mathbf{N}\right\}$ be an enumeration of rational numbers in $[0,1]$ and let a_{n} be a sequence whose limit is L and for which $\left|a_{n}\right| \leq M$, for all $n \in \mathbf{N}$. Show that the function $f:[0,1] \rightarrow \mathbf{R}$ defined by $f(x)=\left\{\begin{array}{ll}a_{n}, & \text { if } x=q_{n} \\ L, & \text { if } x \notin \mathbf{Q} \cap[0,1]\end{array}\right.$ is Riemann-integrable by following the steps:
a) Given $\epsilon>0$, show there exists an $n_{0} \in \mathbf{N}$ such that $\left|a_{n}-L\right|<\epsilon$ and $\frac{4 M}{n}<\epsilon$ for all $n \geq n_{0}$.
b) For an $n \geq n_{0}$, consider the partitition \mathcal{P} of $[0,1]$ consisting of n^{2} equal-width subintervals. Show that in at most $2 n$ of those subintervals we have $M_{i}-m_{i} \leq 2 M$, and that $M_{i}-m_{i} \leq 2 \epsilon$ holds for the rest of the subintervals. Use this to show that $U(f, \mathcal{P})-L(f, \mathcal{P})<3 \epsilon$.
c) Conclude that f is Riemann-integrable.
(Note: Thomae's function is a special case of this one.)

Real Function Theory I - Exam 2
MAT 726, Spring 2016 - D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C. If you do more than five, best five will be counted.

Theory 1. (3pts) Let $f: E \rightarrow \overline{\mathbf{R}}, f \geq 0$. Define the integral of a nonnegative function.
Theory 2. (3pts) State Fatou's Lemma.
Theory 3. (3pts) State the Lebesgue Dominated Convergence Theorem.

Type A problems (5pts Each)

A1. Determine if the function $f:[1, \infty) \rightarrow \mathbf{R}, f(x)=\frac{1}{x^{3}}$ is integrable over $[1, \infty)$. If it is, determine $\int_{[1, \infty)} f$. Justify your work with theory.
A2. Give an example of a sequence of functions $f_{n}: E \rightarrow \mathbf{R}$ such that $f_{n} \rightarrow f$ pointwise on E, but $\int_{E} f_{n}$ does not converge to $\int_{E} f$.
A3. Give a counterexample to the Bounded Convergence Theorem if we remove the assumption that $m E<\infty$, that is, give an example of a sequence of functions $f_{n}: E \rightarrow \mathbf{R}$, each with finite support, such that $\left|f_{n}\right|<M$ for all $n \in \mathbf{N}$, but $\int_{E} f_{n}$ does not converge to $\int_{E} f$.
A4. Suppose $f_{n}: E \rightarrow \overline{\mathbf{R}}, n \in \mathbf{N}, f: E \rightarrow \overline{\mathbf{R}}$ are all integrable over E and that $f_{n} \rightarrow f$ pointwise on E. Show that if $\int_{E}\left|f_{n}-f\right| \rightarrow 0$, then $\int_{E} f_{n} \rightarrow \int_{E} f$.
A5. Show that countable additivity of integration holds if $f \geq 0$, without the assumption that f is integrable.
A6. Let \mathcal{F} and \mathcal{G} be two uniformly integrable families of functions $f: E \rightarrow \overline{\mathbf{R}}$. Let $\alpha, \beta \in \mathbf{R}$ and define $\mathcal{H}=\{\alpha f+\beta g \mid f \in \mathcal{F}, g \in \mathcal{G}\}$. Show that the family of functions \mathcal{H} is uniformly integrable.

Type B problems (8pts Each)

B1. Let $f:[1, \infty) \rightarrow \mathbf{R}, f(x)=\frac{1}{n^{2}}$ for $x \in\left[n, n+\frac{1}{2}\right)$, and $f(x)=-\frac{1}{3 n^{2}}$, for $x \in\left[n+\frac{1}{2}, n+1\right)$, for every $n \in \mathbf{N}$. Determine whether f is integrable and, if it is, find its integral (expressed as a sum of a series). Justify your work with theory.
B2. Let $f: E \rightarrow \overline{\mathbf{R}}, f \geq 0$ be integrable. Given $\epsilon>0$, show there exists a simple function ϕ of finite support, $0 \leq \phi \leq f$, such that $\int_{E} f-\int_{E} \phi<\epsilon$.
B3. Suppose $f_{n}: E \rightarrow \overline{\mathbf{R}}, f_{n} \geq 0$ on $E, n \in \mathbf{N}$, is a sequence of functions. Show the generalized Fatou Lemma: $\int_{E} \lim \inf f_{n} \leq \lim \inf \int_{E} f_{n}$.
$\mathbf{B 4}$. Suppose $f_{n}: E \rightarrow \overline{\mathbf{R}}, f_{n} \geq 0$ on $E, n \in \mathbf{N}$, is a decreasing sequence of functions that converges pointwise to $f: E \rightarrow \overline{\mathbf{R}}$. If f_{1} is integrable, show that $\int_{E} f_{n} \rightarrow \int_{E} f$. Give an example where the conclusion does not hold if f_{1} is not integrable.

B5. Give an example where countable additivity of integration fails, if f is not assumed to be integrable.
B6. Let $f: E \rightarrow \overline{\mathbf{R}}$ be integrable. Show that f^{2} is integrable, where $f^{2}(x)=(f(x))^{2}$. (Hint: start with $\{x \in E||f(x)|>1\}$, apply Chebyshev's inequality, and then additivity over domains.)

Type C problems (12pts Each)

$\mathbf{C 1}$. Let \mathcal{F} be a uniformly integrable family of functions $f: E \rightarrow \overline{\mathbf{R}}$, and let $g: E \rightarrow \overline{\mathbf{R}}$ be a measurable function, and let $\mathcal{H}=\{f g \mid f \in \mathcal{F}\}$.
a) If g is bounded, show that \mathcal{H} is uniformly integrable.
b) If g is integrable over E, does it follow that \mathcal{H} is uniformly integrable?
$\mathbf{C} 2$. Let a bounded function $f: E \rightarrow \mathbf{R}, m E<\infty$, be integrable. The definition of integrability in this case does not assume that f is measurable. Show that f is measurable by using these steps:
a) Show there exist simple functions $\phi_{n}, \psi_{n}: E \rightarrow \mathbf{R}$ such that $\phi_{n} \leq f \leq \psi_{n}$ on E and $\int_{E}\left(\psi_{n}-\phi_{n}\right)<\frac{1}{2^{2 n}}$, for every $n \in \mathbf{N}$.
b) Define $E_{m n}=\left\{x \in E \left\lvert\, \psi_{n}(x)-\phi_{n}(x)>\frac{m}{2^{n}}\right.\right\}$ and $F_{m}=\cup_{n \in \mathbf{N}} E_{m n}$. Use Chebyshev's inequality and countable additivity to show that $m\left(E_{m n}\right)<\frac{1}{2^{n} m}$ and $m\left(F_{m}\right)<\frac{1}{m}$.
c) Show that if $x \in F_{m}^{c}$, then $\psi_{n}(x)-\phi_{n}(x) \rightarrow 0$, so $\psi_{n}(x), \phi_{n}(x) \rightarrow f(x)$.
d) Observe that F_{m} is a descending sequence and show that $\psi_{n}-\phi_{n} \rightarrow 0$ ae on E.
e) Conclude that f is measurable function as the limit ae of simple, hence measurable, functions.

Real Function Theory I - Exam 3
MAT 726, Spring 2016 - D. Ivanšić

Name:

Do all the theory problems. Then do five problems, at least two of which are of type B or C. If you do more than five, best five will be counted.

Theory 1. (3pts) If E is measurable, define the set $L^{p} E$.
Theory 2. (3pts) State Holder's inequality, along with the the statement about f^{*}.
Theory 3. (3pts) Define a Cauchy sequence in a normed linear space.

Type A problems (5pts Each)

A1. On $C[a, b]$ define $\|f\|_{1}=\int_{[a, b]}|f|$. Show that $\left\|\|_{1}\right.$ is a norm.
A2. For every $p \in[1, \infty]$, give an example of a function $f \in L^{p}[2, \infty)$ such that $f(x)>0$ for all $x \in[2, \infty)$.
A3. Give an example of a function that is in $L^{3}(0,1)$, but is not in $L^{5}(0,1)$.
A4. If $f, g \in L^{p} E$, does it follow that the product $f g$ is in $L^{p} E$?
A5. Let E be measurable, $m E<\infty$ and $S \subset L^{1} E$ be the subspace of simple functions with finite support. Is S a Banach space with respect to $\left\|\|_{1}\right.$?
A6. Let $f \in L^{p_{1}} E$, and let f be bounded. If $p_{2}>p_{1}$, show that $f \in L^{p_{2}} E$. (This statement is different from the similar statement we had that assumed $m E<\infty$, but did not assume that f was bounded. Here, $m E$ may be infinite. Don't do anything hard: this one needs only a little algebra.)

Type B problems (8pts Each)

B1. Prove Holder's inequality for three functions: let $p, q, r \in(1, \infty)$ such that $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$. If $f \in L^{p} E, g \in L^{q} E$ and $h \in L^{r} E$, then $\int_{E}|f g h| \leq\|f\|_{p}\|g\|_{q}\|h\|_{r}$. (Start by using Holder's inequality on functions $f g$ and h. First show that $f g \in L^{p^{\prime}} E$, where $\frac{1}{p^{\prime}}=\frac{1}{p}+\frac{1}{q}$.)
B2. Let \mathcal{P}_{n} be the linear space of polynomials of degree $\leq n$, and b_{0}, \ldots, b_{n} a collection of $n+1$ distinct real numbers. Show that the functional $\left\|\|: \mathcal{P}_{n} \rightarrow \mathbf{R}\right.$ is a norm on \mathcal{P}_{n}, where $\| f| |=\left|f\left(b_{0}\right)\right|+\left|f\left(b_{1}\right)\right|+\cdots+\left|f\left(b_{n}\right)\right|$.
B3. Give an example of a convergent sequence $\left\{a_{n} \mid n \in \mathbf{N}\right\}$ of real numbers so that there does not exist a convergent series $\sum \epsilon_{n}$ satisfying $\left|a_{k}-a_{k+1}\right| \leq \epsilon_{k}$ for every $k \in \mathbf{N}$. (Your sequence cannot be monotone, since in this case convergence of $\left\{a_{n}\right\}$ is equivalent to convergence of the series $\sum\left|a_{k}-a_{k+1}\right|$, in which case you could use $\epsilon_{k}=\left|a_{k}-a_{k+1}\right|$.)
B4. Let $m E<\infty$ and $1 \leq p_{1}<p_{2} \leq \infty$. Corollary 7.3 states that for an $f \in L^{p_{2}} E$, there is a constant $c>0$ such that $\|f\|_{p_{1}} \leq c\|f\|_{p_{2}}$. Show that there is no constant c satisfying $\|f\|_{p_{2}} \leq c\|f\|_{p_{1}}$ for all $f \in L^{p_{2}} E$, by examining the family of functions $\left\{\left.\frac{1}{x^{\frac{\alpha}{p_{2}}}} \right\rvert\, 0<\alpha<1\right\}$, on $E=(0,1]$.

B5. Let $f_{n} \rightarrow f$ pointwise on E, where $0 \leq f_{n} \leq f$ on E and $f \in L^{p} E$. Show that $f_{n} \in L^{p} E$ for every $n \in \mathbf{N}$, and that $f_{n} \rightarrow f$ in $L^{p} E$.

B6. Show that every Cauchy sequence has a rapidly Cauchy subsequence.

Type C problems (12pts Each)

C1. Let $C \subset l^{\infty}$ be the subspace of all sequences that converge to a real number. Show that this is a Banach space with the norm $\left\|\|_{\infty}\right.$.

