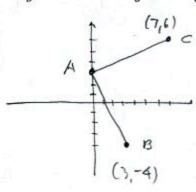
College Algebra — Joysheet 3 MAT 140, Spring 2016 — D. Ivanšić


Show all your work!

(10pts) Draw the points A = (0,3), B = (3,-4) and C = (7,6).

a) Which of points B or C is closer to A?

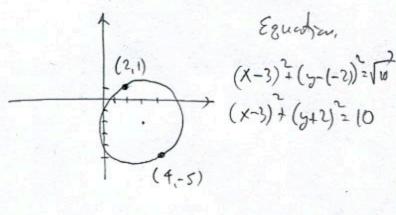
b) Are the lines AB and AC perpendicular? (Hint: That's the same as asking whether the

triangle ABC is a right triangle.)

a)
$$d(A_1B) = \sqrt{(9-6)^{\frac{1}{4}} (-4-3)^{\frac{1}{4}}} = \sqrt{9+49} = \sqrt{58}$$
 $d(A_1C) = \sqrt{(7-0)^{\frac{1}{4}} (6-3)^{\frac{1}{4}}} = \sqrt{49+9} = \sqrt{58}$

distances to A from B and C are save,

 $d) d(B_1C) = \sqrt{(7-3)^{\frac{1}{4}} (6-(-4))^{\frac{1}{4}}} = \sqrt{16+100} = \sqrt{116}$


Check Pythascian thesen:

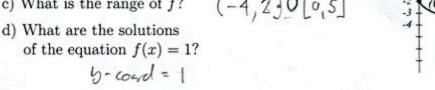
 $\sqrt{58} + \sqrt{58} = \sqrt{116}$

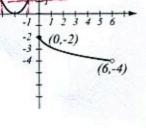
yes, Since $58+58 = 116$

 (8pts) Write the equation of the circle whose diameter has endpoints (4, -5) and (2, 1). Sketch the circle.

Centr²
$$\left(\frac{4+2}{2}\right)^{-5+1}$$

= $\left(3, -2\right)$
radin = distance from $(3, -2)$ to $(2, 1)$
= $\sqrt{(2-3)^2 + (1-(-2))^2}$
= $\sqrt{1+9} = \sqrt{10}$

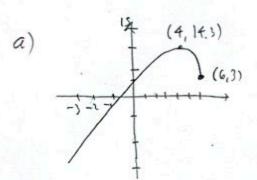

(8pts) Use the graph of the function f at right to answer the following questions.


a) Find f(-4) and f(0). 4(-4) = 5, 4(0) = -2

b) What is the domain of f? $\begin{bmatrix} -4, 6 \end{bmatrix}$

x=-3,-1

c) What is the range of f?



(0,5)

4. (12pts) The function
$$f(x) = 2x\sqrt{6-x} + 3$$
 is given.

- a) Use your calculator to accurately its graph. Draw the graph here, and indicate units on the axes.
- b) Find all the x- and y-intercepts (accuracy: 6 decimal points).
- c) State the domain and range.

5. (12pts) Find the domain of each function and write it using interval notation.

$$g(x) = \frac{x^2 + 5}{x^2 + 6x - 16}$$

$$C_{on} \downarrow \downarrow \quad \text{line}$$

$$\chi^2 + 6\chi - 16 = 0$$

$$(\chi + 8)(\chi - 1) = 0 \qquad \text{thermalization}$$

$$\chi = -8, 2$$

$$(-\infty, -8) \cup (-8, 2) \cup (2, \infty)$$

$$f(x) = \frac{\sqrt{x}}{3x - 2}$$
Must have $\times > 0$
Calf have $3 \times -2 = 0$ — varyouter
$$\times^2 \frac{2}{3}$$

$$\left[0, \frac{2}{3}\right) \cup \left(\frac{2}{3}, \infty\right)$$

6. (10pts) Let $g(x) = \frac{\sqrt{3x+15}}{x^2-4}$. Find the following (simplify where appropriate)

$$g(7) = \frac{\sqrt{3.7 + 15}}{7^{\frac{2}{3}} + 1} = \frac{\sqrt{36}}{45} = \frac{6}{45} = \frac{2}{15}$$

$$g(2u) = \frac{\sqrt{3 \cdot (2u) + 15}}{(2u)^2 - 4}$$

$$= \frac{\sqrt{6u + 15}}{4u^2 - 4}$$

$$g(-6) = \frac{\sqrt{3.(-6)+15}}{(-6)^2-4} = \frac{\sqrt{-3}}{32} \text{ real number}$$

$$g(x+7) = \frac{\sqrt{3(x+7)+15}}{(x+7)^2 - 4}$$

$$= \frac{\sqrt{3x+21+15}}{x^2 + 14x + 49 - 4} = \frac{\sqrt{3x+36}}{x^2 + 14x + 45}$$