Calculus 3 - Final Exam
MAT 309, Fall 2013 - D. Ivanšić

Name:
Show all your work!

1. (12pts) Find the equation of the plane that contains the point $(3,2,-4)$ and the line $x=1-2 t, y=3+t, z=-2-t$.
2. (16pts) Let $f(x, y)=x^{2}-y^{2}$.
a) Sketch the contour map for the function, drawing level curves for levels $k=-2,-1,0,1,2$.
b) At point $(2,-1)$, what is the directional derivative of f in the direction of $\langle 1,-1\rangle$?
c) In what direction is the directional derivative of f the greatest at $(2,-1)$, and what is it?
d) If C is the curve parametrized by $x=2 t-1, y=t^{2}+3 t, 0 \leq t \leq 2$, what is $\int_{C} \nabla f \cdot d \mathbf{r}$?
3. (10pts) Find the equation of the tangent plane to the surface $\frac{x^{2}}{9}-\frac{y^{2}}{4}-\frac{z^{2}}{16}=1$ at the point $(6,-2 \sqrt{2}, 4)$. Simplify the equation to standard form.
4. (12pts) The volume of a cylinder is given by $V=\pi r^{2} h$. When $r=2$ meters and $h=5$ meters, use differentials to estimate the change in volume of the cylinder, if its radius decreases by 0.1 m and its height increases by 0.2 m .
5. (16pts) Let D be the region bounded by the curves $x=0, y=\frac{1}{3}$ and $y=e^{x}$. Sketch the region and set up $\iint_{D} y^{2} d A$ as iterated integrals in both orders of integration. Then evaluate the double integral using the easier order.
6. (18pts) Find and classify the local extremes for $f(x, y)=x^{3}+3 x^{2} y-y^{3}+9 y$.
7. (16pts) Use cylindrical or spherical coordinates to find $\iiint_{E} x^{2}+y^{2} d V$, where E is the region inside the sphere $x^{2}+y^{2}+z^{2}=9$ and above the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ Sketch the region E.

Bonus (10pts) A ray of light, represented by the line $x=2-t, y=4+2 t$, $z=-3-3 t$ reflects off the mirror represented by the plane $x-y+2 z=10$ at point $P=(4,0,3)$. Find parametric equations of the line that represents the reflected ray. (Hints: the ray and the reflected ray determine a plane that is perpendicular to the mirror. Vector projection is helpful.)

