```
Calculus 3- Exam 5
MAT 309, Fall 2013 - D. Ivanšić
```

1. (10pts) Let $f(x, y)=\frac{x^{3}}{y^{2}}$, and let $\mathbf{F}=\nabla f$. Apply the fundamental theorem for line integrals to answer:
a) What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if C is part of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$? How about if C is a straight line segment from $(1,1)$ to $(3,9)$?
b) What is $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ if C is the circle centered at $(3,4)$ with radius 2 ?
2. (12pts) Find curl \mathbf{F} and div \mathbf{F} if $\mathbf{F}(x, y, z)=\left\langle z^{2}-4 y^{2}, 4 x^{2}-3 z^{2}, 3 y^{2}-x^{2}\right\rangle$.
3. (14pts) A surface is parametrized by $\mathbf{r}(u, v)=\left\langle u^{2}, v^{2}, u+v\right\rangle$. Find the equation of the tangent plane to this surface at the point where $(u, v)=(2,-3)$.
4. (20pts) One of the two vectors fields below is not a gradient field, and the other one is (curl detects it). Identify which is which, and find the potential function for the one that is.

$$
\mathbf{F}(x, y, z)=\left\langle 2 x \sin z+y^{3} e^{x}, 3 y^{2} e^{x}+\cos z, x^{2} \cos z-y \sin z\right\rangle \quad \mathbf{G}(x, y, z)=\left\langle x^{2}, y^{2}, y z^{2}\right\rangle
$$

5. (26pts) Consider the part of the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=1$ between the planes $z=-2$ and $z=0$.
a) Draw the surface, parametrize it and specify the planar region D where your parameters come from.
b) Set up the iterated integral that gives the area of the surface. Simplify the set-up, but do not evaluate the integral.
6. (18pts) Use Green's theorem to find the line integral $\int_{C} x^{3} d x+x y d y$, where C is the triangle from $(-1,0)$ to $(1,0)$ to $(0,1)$ to $(-1,0)$.

Bonus. (10pts) Use Green's theorem to find the area enclosed by the circle $x^{2}+y^{2}=4$ that is above the line $y=1$.

