Calculus $3-$ Exam 4 MAT 309, Fall $2013-$ D. Ivanšić	Name:

Name: Show all your work!

1. (18pts) Use cylindrical coordinates to find the volume of the region E enclosed by the paraboloids $z=x^{2}+y^{2}$ and $z=3-\frac{1}{2}\left(x^{2}+y^{2}\right)$. Sketch the region E.
2. (18pts) Use spherical coordinates to find $\iiint_{E} x z d V$, where E is the part of the first octant that is inside the sphere $x^{2}+y^{2}+z^{2}=16$, and outside the sphere $x^{2}+y^{2}+z^{2}=9$. Sketch the region E.
3. (14pts) Let $\mathbf{F}(x, y)=\langle x, 3\rangle$.
a) Roughly draw the vector field $\mathbf{F}(x, y)$, scaling the vectors for a better picture.
b) Guess a function $f(x, y)$ so that $\mathbf{F}=\nabla f$.
c) How could you have roughly done a) without evaluating the vector field at various points?
4. (18pts) In both cases set up and simplify the set-up, but do not evaluate the integral. a) $\int_{C} x^{2}-y^{2}+z^{2} d s$, where C is the line segment from $(0,0,1)$ to $(1,-3,3)$.
b) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, if $\mathbf{F}(x, y)=\left\langle x e^{y}, y e^{x}\right\rangle$, where C is the circle of radius 5 centered at the origin.
5. (12pts) Find the cylindrical and spherical coordinates of the point whose cartesian coordinates are $(-\sqrt{6},-\sqrt{2}, 2 \sqrt{2})$.
6. (20pts) Use change of variables to find $\iint_{D} y d A$, if D is the rectangle that is bounded by the lines $y=x, y=x+5, y=-x, y=-x+1$. Sketch the rectangle.

Bonus. (10pts) Find the Jacobian $\frac{\partial(x, y, z)}{\partial(\rho, \theta, \Phi)}$, where x, y, z are functions that convert spherical coordinates to cartesian. What do you expect to get?

