Calculus 3 — Exam 4	Name:
MAT 309, Fall 2013 — D. Ivanšić	Show all your work!

1. (18pts) Use cylindrical coordinates to find the volume of the region E enclosed by the paraboloids $z = x^2 + y^2$ and $z = 3 - \frac{1}{2}(x^2 + y^2)$. Sketch the region E.

2. (18pts) Use spherical coordinates to find $\iiint_E xz \, dV$, where *E* is the part of the first octant that is inside the sphere $x^2 + y^2 + z^2 = 16$, and outside the sphere $x^2 + y^2 + z^2 = 9$. Sketch the region *E*.

- **3.** (14pts) Let $\mathbf{F}(x, y) = \langle x, 3 \rangle$.
- a) Roughly draw the vector field $\mathbf{F}(x, y)$, scaling the vectors for a better picture.
- b) Guess a function f(x, y) so that $\mathbf{F} = \nabla f$.
- c) How could you have roughly done a) without evaluating the vector field at various points?

4. (18pts) In both cases set up and simplify the set-up, but do not evaluate the integral.
a) ∫_C x² - y² + z² ds, where C is the line segment from (0, 0, 1) to (1, -3, 3).
b) ∫_C F ⋅ dr, if F(x, y) = ⟨xe^y, ye^x⟩, where C is the circle of radius 5 centered at the origin.

5. (12pts) Find the cylindrical and spherical coordinates of the point whose cartesian coordinates are $(-\sqrt{6}, -\sqrt{2}, 2\sqrt{2})$.

6. (20pts) Use change of variables to find $\iint_D y \, dA$, if *D* is the rectangle that is bounded by the lines y = x, y = x + 5, y = -x, y = -x + 1. Sketch the rectangle.

Bonus. (10pts) Find the Jacobian $\frac{\partial(x, y, z)}{\partial(\rho, \theta, \Phi)}$, where x, y, z are functions that convert spherical coordinates to cartesian. What do you expect to get?