Calculus 3 - Exam 2
MAT 309, Fall 2013 - D. Ivanšić

Name:
Show all your work!

1. $(22 \mathrm{pts})$ Let $T(x, y)=\frac{y}{x^{2}}$.
a) Find the domain of T.
b) Sketch the contour map for the function, drawing level curves for levels $k=-1,-\frac{1}{2}, 0, \frac{1}{2}, 1$. Note the domain on the picture.
c) Suppose T represents temperature in degrees Celsius in the plane, and a freezing bug located at $(2,-4)$ wishes to move to a point with a higher temperature. In what direction should it start moving to achieve the greatest increase in temperature? What is the directional derivative in that direction?
d) Draw a path the bug would take in order to reach a point with temperature $1^{\circ} \mathrm{C}$ if it always moves in the direction of the greatest increase of temperature.
2. (10pts) Find the equation of the tangent plane to the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{25}+\frac{z^{2}}{16}=1$ at the point $\left(\sqrt{2},-\frac{5}{2},-2\right)$. Simplify the equation to standard form.
3. (18pts) Let $B=\frac{x^{2}+y^{2}}{x+1}, x=\cos u+\sin v, y=\sin u \cos v$. Use the chain rule to find $\frac{\partial B}{\partial v}$ when $u=\frac{\pi}{4}, v=\pi$.
4. (16pts) The body surface area S in m^{2} can be calculated from a person's weight w in kg and height h in cm using the formula $S=\frac{\sqrt{w h}}{60}$. Use differentials to estimate the change in body surface area of a woman who weighs 64 kg and is 169 cm tall if her weight decreases by 0.5 kg and her height increases by 2 cm . Substitute all the numbers, and simplify what you can, but stop when the numbers get hairy. (Note: $13^{2}=169$.)
5. (20pts) At a state fair, junked cars get catapulted at inital speed $25 \mathrm{~m} / \mathrm{s}$ and angle α for which $\tan \alpha=\frac{1}{2}$. Assume $g=10$.
a) Find the position of the car at time t.
b) When does the car fall to the ground?
b) Find the horizontal distance that the car will travel.
6. (14pts) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ at the point $(1,2,-1)$, if $y z^{3}+x z^{2}-x^{2} y^{3}=$ -9 .

Bonus (10pts) Show that the bug in problem 1 moves along the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{18}=1$. That is, show that a parametrization $\mathbf{r}(t)$ for this curve satisfies that $\mathbf{r}^{\prime}(t)$ is always parallel to $\nabla T(\mathbf{r}(t))$. Hint: a parametrization to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $x=a \cos t, y=b \sin t$.

