College Algebra - Exam 1 MAT 140, Spring 2016 - D. Ivanšić

Name: \qquad
Show all your work!

1. (8pts) Use the graph of the function f at right to answer the following questions.
a) Find $f(-1)$ and $f(-6)$.
b) What is the domain of f ?
c) What is the range of f ?
d) What are the solutions of the equation $f(x)=4$?

2. (10pts) Use your calculator to accurately sketch the graph of $y=x^{3}-6 x^{2}+6 x-3$. Draw the graph here, and indicate units on the axes. Find all the x - and y-intercepts (accuracy: 6 decimal points).
3. (4pts) Convert to scientific notation or a decimal number:
$4.171824 \times 10^{6}=$
$0.0007459=$

Use formulas to expand:
4. (3pts) $\left(x-y^{4}\right)\left(x+y^{4}\right)=$
5. $(4 \mathrm{pts})(3 s+5 t)^{2}=$
6. $(5 \mathrm{pts})$ Factor: $u^{3}+27=$

Simplify, showing intermediate steps. Assume variables can be any real numbers.
7. $(2 \mathrm{pts}) \sqrt{48}=$
8. $(5 \mathrm{pts}) \sqrt{125 x^{6} y^{3}}=$
9. (8pts) Simplify.
$\frac{x-1}{x^{2}-9}-\frac{4 x}{x^{2}-4 x-21}=$
10. (8pts) Simplify. Express answers first in terms of positive exponents, then convert to radical notation.
$\frac{\left(x^{9} y^{-\frac{3}{2}}\right)^{\frac{1}{3}}}{\left(x^{\frac{1}{2}} y^{\frac{3}{2}}\right)^{5}}=$
11. (6pts) Rationalize the denominator.
$\frac{2 \sqrt{3}-5}{4+\sqrt{3}}$
12. (5pts) Solve the equation for t.
$c t-5 a=t+1$
13. (8pts) Find the domains of the functions below and write them using interval notation.
$f(x)=\frac{x-13}{x^{2}+6 x-40}$

$$
g(x)=\sqrt[3]{3 x-11}
$$

14. (9pts) Let $g(x)=2 x^{2}+3 x-7$. Find the following (simplify where appropriate). $g(-2)=$

$$
g(-u)=
$$

$$
g(x+5)=
$$

15. (5pts) Which of the folowing graphs are graphs of functions? Why?

16. (10pts) The diameter of a circle has endpoints $(-3,-2)$ and $(1,4)$.
a) Find the equation of the circle.
b) Draw the circle in the coordinate plane.

Bonus (10pts) Find the coordinates (x, y) of at least 4 points in the plane that lie on the curve with the equation $(x-2)^{2}+(y+4)^{2}=10$. (Hint: set one variable, and solve for the other; or draw the curve and infer some points from the picture.)

