College Algebra — Exam 4 MAT 140, Spring 2016 — D. Ivanšić

Name: Saul Ocean
Show all your work!

(8pts) Evaluate without using the calculator:

$$\log_9 729 = 3$$

$$\log_2 \frac{1}{8} = -3$$

$$\log_2 \frac{1}{8} = -\gamma \qquad \qquad \log_c \sqrt[7]{c^3} = \frac{\gamma}{\gamma} \qquad \qquad \log_{\sqrt{b}} b^4 = \sqrt[7]{c^3}$$

$$\log_{\sqrt{b}} b^4 = f$$

$$2^{?} = \frac{1}{8} = \frac{1}{2} = 2^{-3}$$

$$2^{\frac{7}{2}} = \frac{1}{8} = \frac{1}{2} = 2^{-3}$$
 $C^{\frac{7}{2}} = C^{\frac{7}{2}}$ $(\sqrt{L})^{\frac{7}{2}} = L^{\frac{4}{2}} ((\sqrt{L})^{\frac{7}{2}})^{\frac{4}{2}} ((\sqrt{L})^{\frac{7}{2}})^{\frac{7}{2}} ((\sqrt{L})^{\frac{7}{2}})^{\frac{7}{2}}$

2. (4pts) Use the change-of-base formula and your calculator to find log₃ 0.13 with accuracy 6 decimal places. Show how you obtained your number.

3. (5pts) If $\log_a 5 = u$ and $\log_a 9 = v$, express in terms of u and v:

$$\log_a \frac{9}{5} = \log_a 9 - \log_a 5$$

 (6pts) Write as a sum and/or difference of logarithms. Express powers as factors. Simplify if possible.

$$\log_3 \frac{x^4}{9\sqrt{y^7}} = \log_3 x^4 - \log_3 9 - \log_3 y^{\frac{7}{2}}$$

$$= 4\log_3 x - 2 - \frac{7}{2}\log_3 y$$

(6pts) Write as a single logarithm. Simplify if possible.

$$3\log_{2}(x^{-2}y^{4}) - 4\log_{2}(x^{2}y^{5}) = \log_{1}(x^{2}y^{4})^{3} - \log_{1}(x^{2}y^{5})^{4} = \log_{1}(x^{6}y^{12}) - \log_{1}(x^{9}y^{2})$$

$$= \log_{1}\frac{x^{6}y^{12}}{x^{8}y^{20}} = \log_{1}(x^{-14}y^{-8}) = \log_{1}\frac{1}{x^{9}y^{9}}$$

(4pts) Simplify.

$$\log 10^{x-3} = X - 3$$

$$4^{\log_4(7x)} = \sqrt{2}$$

- (6pts) The graph of a function f is given.
- a) Is this function one-to-one? Justify.
- b) If the function is one-to-one, find the graph of f^{-1} , labeling the relevant points, and showing any asymptotes.
- 0) Yes- it perses the branchal line test
- 8. (9pts) Let $f(x) = \frac{4x-2}{2x+3}$.
- a) Find the formula for f^{-1}
- b) Find the range of f^{-1} .

$$y = \frac{4x-2}{2x+3}$$

9. (6pts) Using transformations, draw the graph of $f(x) = 2 - 3^x$. Explain how you transform the graph of a basic function in order to get the graph of f. Indicate at least one point on the graph and any asymptotes.

Rage of = domain of

Coult have 2x+3=0

2 x= -3

10. (6pts) Find the domain of the function $f(x) = \frac{\log_3(2x-7)}{\log_7(5-x)}$ and write it in interval notation.

11. (8pts) How much should you invest in an account bearing 3.1%, compounded quarterly, if you wish to have \$1,000 in five years?

$$A = P(1 + \frac{\Gamma}{u})^{ut}$$

$$1000 = P(1 + \frac{0.031}{4})^{4.5}$$

$$1000 = P. 1.16696$$

Solve the equations.

h=8,-2

12. (6pts)
$$16^{3x-2} = \left(\frac{1}{8}\right)^{x+1}$$

13. (4pts) $5^{2x} = 4$

$$(2^4)^{3x-2} = (2^7)^{x+1}$$

$$2^{12x-8} = 2^{-3x-3}$$

$$12x-8 = -3x-3$$

$$13x+8$$

$$12x-8 = -3x-3$$

$$14x+8$$

$$15x = 5$$

$$15x$$

 (12pts) The population of Fecund Grove was 14,000 in 2005 and 22,000 in 2011. Assume that it has grown according to the formula $P(t) = P_0 e^{kt}$.

a) Find k and write the function that describes the population at time t years since 2005. Graph it on paper.

b) Find the predicted population in the year 2021.

a)
$$|4000 \text{ m}| 2005$$
 $22000 \text{ m}| 2011$

$$P(41 = P_0 e^{\xi 4} = |4e^{\xi 4}| (4hasandr))$$

$$22 = P(6) = |4e^{\xi 6}|$$

$$22 = |4e^{\xi 6}|$$

$$22 = |4e^{\xi 6}|$$

$$\frac{22}{14} = |4e^{\xi 6}|$$

$$\frac{22}{14} = |4e^{\xi 6}|$$

$$\ln \frac{21}{14} = |4e^{\xi 6}|$$

$$\ln \frac{21}{$$

Population in 2021 is P(16)=14e 0.0753305-16 = 46,728347 About 46,728 people 14 2021

Bonus (10pts) Let $f(x) = \frac{3}{1 + e^{-x}}$.

a) Find the inverse function of f.

b) Show that
$$f^{-1}(f(x)) = x$$
.

a)
$$y = \frac{3}{1+e^{-x}}$$
 $-x = \ln(\frac{3}{5}-1)$ b) $\frac{y}{3} = \frac{1}{1+e^{-x}}$ $x = -\ln(\frac{3}{5}-1)$ $\frac{3}{5} = 1+e^{-x}$ $\frac{7}{5}(y) = -\ln(\frac{7}{5}-1)$ $e^{-x} = \frac{3}{5}-1$ | \ln

nction of f.

$$-1 \times = \ln \left(\frac{3}{5} - 1\right)$$

$$-1 \times = \ln \left(\frac{3}{5} - 1\right)$$

$$= -\ln \left(\frac{3}{5} - 1\right)$$