
Advanced Calculus 2 — Exam 1
MAT 526/626, Spring 2015 — D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C
(one if you are an undergraduate student). If you do more than five, best five will be

counted.

Theory 1. (3pts) Define a uniformly continuous function.

Theory 2. (3pts) State the sequential criterion for continuity (only the affirmative version).

Theory 3. (3pts) State the Bolzano Intermediate Value Theorem.

Type A problems (5pts each)

A1. Let f : R → R be such that f(c) > 0. Show that there exists a neighborhood Vδ(c)
such that f(x) > 0.9 · f(c) for all x ∈ Vδ(c).

A2. Let f : R → R be continuous and A = {x ∈ R | f(x) ∈ [3, 5]}. If (xn) is a sequence
such that xn ∈ A and (xn) converges to c, show that c ∈ A.

A3. Let f : R → R be a function. Show: f(x) is continuous at c if and only if the function
g(x) = f(x) + x is continuous at c. Don’t do anything complicated.

A4. Let f, g : R → R be continuous functions such that f(a) > g(a) and f(b) < g(b),
a < b. Show that there exists a c ∈ (a, b) such that f(c) = g(c).

A5. Let f : [a, b] → R be a continuous function such that f(x) < 0, for all x ∈ [a, b]. Show
there exists a number d < 0 such that f(x) < d, for all x ∈ [a, b].

Type B problems (8pts each)

B1. Let f(x) = [[|x|]], where [[x]] is the greatest integer operation (so, f is greatest integer
of absolute value of x). Determine the numbers where the function is continuous and where
it is not. Justify in detail (not just the picture).

B2. Give an example of a function f that is discontinuous, but f(x)2 is continuous. Is
there an example where f is discontinuous, but f(x)3 is continuous? Why or why not?

B3. Let f : [a, b] → R be continuous, and let M be its maximum value. Show that
M = sup{f(x) | x ∈ [a, b] ∩Q}.

B4. Show that the function f(x) = 1
5x+3

is Lipschitz on the interval [0,∞).

B5. Let f : [a, b] → R be a Lipschitz function such that f(x) ̸= 0 for all x ∈ [a, b]. Show
that the function 1

f(x)
is Lipschitz, too.

B6. Let f : [a, b] → R be continuous, and suppose f takes on some value V1 at least twice.
Show that there is another function value V2 ̸= V1 that is taken on at least twice.



Type C problems (12pts each)

C1. Show that the function f(x) =
√
x is uniformly continuous on its domain [0,∞).

C2. Show that the function f(x) = lnx is uniformly continuous on the interval [1,∞).

C3. Give an alternate proof that an increasing function f : R → R may have only count-
ably many discontinuities: if f is strictly increasing, let D = {c | f is not continuous at c}
and define the function g(x) as follows:

g(c) =


f(c), if lim

x→c−
f(x) = lim

x→c+
f(x)

any rational number in the interval

[
lim
x→c−

f(x), lim
x→c+

f(x)

]
, if lim

x→c−
f(x) < lim

x→c+
f(x).

a) Show that g is strictly increasing.
b) Show that g(D) ⊆ Q.
c) Apply injectivity of g to argue that D is countable.
d) If f is not strictly increasing, apply problem A3 to replace it by a strictly increasing
function with the same discontinuity set.
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Name:
Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C
(one if you are an undergraduate student). If you do more than five, best five will be

counted.

Theory 1. (3pts) Define the derivative of a function f : I → R, where I is an interval.

Theory 2. (3pts) Define a convex function.

Theory 3. (3pts) State the Mean Value Theorem.

Type A problems (5pts each)

A1. Is this function differentiable at 0: f(x) =

{
x, if x ∈ Q
0, if x /∈ Q?

A2. Find the limits: a) lim
x→0

tanx− x

x3
b) lim

x→0+

n
√
x lnx.

A3. Let f : R → R be such that f ′′′ exists and f ′′′(x) < 0, and consider the Taylor
polynomial P2 for f at x0, whose graph is a parabola. Use Taylor’s theorem to show that
the graph of f is above this parabola for x < x0, and below it for x > x0.

A4. Let L(x) be a function such that L′(x) = ex
2
(it exists, but cannot be written using

elementary functions). Write expressions for the derivatives of the following functions:
a) L(x)2 b) L(L(x)) c) L(

√
x)

A5. Draw two pictures: the first illustrates how Newton’s method works in a favorable
setting, and the second shows how it can fail (that is, the next iteration is much farther from
the solution than the current one).

A6. Suppose f : R → R is such that f ′′ exists and for some a < c < b we have
f(a) = f(b) = 0 and f(c) > 0. Show that there exists a point d ∈ (a, b) such that f ′′(d) < 0
(use convexity).

Type B problems (8pts each)

B1. Let f(x) =

{
x2 sin 1

x
, if x ̸= 0

0, if x = 0.

Show that f is differentiable at every point, find f ′(x), and show that lim
x→0

f ′(x) does not

exist, hence f ′(x) is not continuous.



B2. Let f : [a,∞) → R be differentiable, f(a) = b and suppose m1 ≤ f ′(x) ≤ m2, for all
x ∈ (a,∞). Use the Mean Value Theorem to show that the graph of f must lie between the
lines with slopes m1 and m2, passing through (a, b). Conversely, does every smooth graph
passing through (a, b) between the two lines satisfy m1 ≤ f ′(x) ≤ m2?

B3. Let f(x) = 3
√
x.

a) Write the Taylor polynomial P3 for f at x0 = 8.
b) Find the interval around 8 for which you can guarantee that P3 approximates f with
accuracy 10−2.

B4. Use a Taylor polynomial to get a rational number that approximates
√
e with accu-

racy 10−4.

B5. Show that the equation x3 + 2x2 − 5 = 0 has a solution and find an interval in which
Newton’s method converges, regardless of the starting point. Also, find how many iterations
Newton’s method will require to achieve accuracy 10−3.

B6. Find the limit: lim
x→0+

(− lnx)ln(x+1). (Note: for small x > 0, lnx < 0, so we need a

minus to ensure that the base is a positive number).

Type C problems (12pts each)

C1. Let I be an open interval and f : I → R. Suppose there exists a continuous function
g : I → R such that for every u, v ∈ I, there exists a c between u and v such that

f(v)− f(u)

v − u
= g(c).

Show that f is differentiable on I and that f ′(x) = g(x), which implies that f ′ is continuous.

C2. Let f : (0,∞) → R be differentiable on (0,∞). If the following statements are true,
prove them, otherwise, find a counterexample.
a) If lim

x→∞
f(x) = b, then lim

x→∞
f ′(x) = 0.

b) If lim
x→∞

f ′(x) = b, where b > 0, then lim
x→∞

f(x) = ∞.

c) If lim
x→∞

f ′(x) = 0, then lim
x→∞

f(x) exists, and is a real number.
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Name:
Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C
(one if you are an undergraduate student). If you do more than five, best five will be

counted.

Theory 1. (3pts) Assuming tagged partitions have been defined, define the Riemann integral
of a function f : [a, b] → R.

Theory 2. (3pts) State the second form of the Fundamental Theorem of Calculus (the one
dealing with differentiability at a point).

Theory 3. (3pts) Explain how the Simpson rule is computed (formula) and what it repre-
sents geometrically.

Type A problems (5pts each)

A1. One integral below can be evaluated using the substition theorem, and the other
cannot. Evaluate the one that can, and explain why the the substitution theorem cannot be
used on the other.

a)

∫ ln(π/2)

ln(π/4)

ex sin ex dx b)

∫ 1

0

lnx

x
dx

A2. If F (x) =

∫ lnx

sinx

1

1 + t8
dt, find the expression for F ′(x).

A3. Let f : [0, 1] → R be the function at right. Use
Cauchy’s criterion to show f is not Riemann integrable.

f(x) =

{
1, if x ∈ Q
−1, if x /∈ Q

A4. If f : [0, 1] → R is continuous and has the property
∫ x

0
f =

∫ 1

x
f for all x ∈ [0, 1], show

that f(x) = 0 for all x ∈ [0, 1].

A5. Show: if f is Riemann integrable on [a, b] and Ṗn is a sequence of tagged partitions of

[a, b] such that ||Ṗn|| → 0, then S(f, Ṗn) →
∫ b

a
f .

A6. Write the specific expression (i.e., with numbers, not variables) for the midpoint

estimate M4 of the integral
∫ 3

1
1
x
dx, but do not evaluate it. Determine its accuracy.

Type B problems (8pts each)

B1. Let f : [1,∞] → R be the function at right and let
F : [1,∞) → R, F (x) =

∫ x

1
f .

a) Calculate F (x).
b) Draw the graphs of f and F .
c) Where is F continuous? Differentiable?

f(x) =


x, if x ∈ [1, 2]
1, if x ∈ (2, 3]

4− x, if (3,∞)



B2. Let f : [1, 5] → R be the function at right.

a) Guess the value of
∫ 5

1
f .

b) Prove by definition of the Riemann integral

that
∫ 5

1
f is the number you guessed.

f(x) =

{
−3, if x ∈ [1, 2]
4, if x ∈ (2, 5]

B3. Let f : [0, 1] → R be the function at
right. Use the squeeze theorem to show f
is Riemann integrable on [0, 1].

f(x) =


n−1
n
, if x ∈

[
1
n
, 1
n−1

)
, n ≥ 2

1, if x = 0
1
2
, if x = 1

B4. Let f : [a, b] → R be a function with the property: given any ϵ > 0, there exists a
step function ϕ : [a, b] → R such that ϕ uniformly approximates f with accuracy ϵ on the
interval [a, b] (this means that |f(x)− ϕ(x)| < ϵ, for all x ∈ [a, b]). Show that f is Riemann
integrable.

B5. Let f ∈ R[−a, a], and let f be an even function (note that f need not be continous,

so you may not use the substitution theorem). Show that
∫ 0

−a
f =

∫ a

0
f , and conclude that∫ a

−a
f = 2

∫ a

0
f . (Hint: let Ṗn be a sequence of tagged partitions of [0, a] such that ||Ṗn|| → 0.

Construct tagged partitions Q̇n of [−a, 0] such that S(f, Ṗn) = S(f, Q̇n), and use them to
show integrals are same.)

B6. For the integral
∫ 5

3
x2 sinx dx, how many subintervals are needed so that the trapezoid

estimate Tn has accuracy 10−3?

Type C problems (12pts each)

C1. If p is a polynomial of degree at most 3, show the Simpson approximation Sn is exact
as follows, without using the error estimate. First note that it is enough to show this for the
case of two subintervals (i.e., for S2).
a) For each of the functions f(x) = 1, x, x2, x3 show that∫ a+h

a−h

f(x) dx =
1

3
h(f(a− h) + 4f(a) + f(a+ h)).

b) Conclude that if p is any polynomial of degree at most 3, x0 < x1 < x2, x1 =
x0+x2

2
, and

h = x1 − x0, then ∫ x2

x0

p(x) dx =
1

3
h(p(x0) + 4p(x1) + p(x2)),

which proves the Simpson approximation is exact for S2.
c) Conclude the Simpson approximation Sn is exact for any polynomial p of degree at most 3,
and any even n.


