```
Calculus 1 - Exam 6
MAT 250, Spring 2013 - D. Ivanšić
```

Find the following antiderivatives.

1. $(3 \mathrm{pts}) \int \frac{1}{\sqrt{x}} d x=$
2. $(3 \mathrm{pts}) \int \frac{1}{\sqrt{1-x^{2}}} d x=$
3. $(4 \mathrm{pts}) \int \sec (4 \theta) \tan (4 \theta) d \theta=$
4. $(7 \mathrm{pts}) \int t^{2}(t-\sqrt[4]{t}) d t=$
5. (8pts) Find $f(x)$ if $f^{\prime}(x)=x^{\frac{2}{3}}+\frac{7}{x}$ and $f(1)=6$.
6. (6pts) Write using sigma notation:
$\frac{1}{1}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{5}}+\cdots+\frac{1}{\sqrt{101}}=$
7. (16pts) Find $\int_{-1}^{6} x-3 d x$ in two ways (they'd better give you the same answer!):
a) Using the "area" interpretation of the integral. Draw a picture.
b) Using the Evaluation Theorem.
8. (16pts) The function $f(x)=4-x^{2}, 0 \leq x \leq 2$ is given.
a) Write down the expression R_{4} that estimates the area under this curve using four approximating rectangles and right endpoints. Then evaluate the expresssion.
b) Illustrate with a diagram, where appropriate rectangles are clearly visible. What does R_{4} represent? Does it over- or underestimate the area under the curve?

Use the substitution rule in the following integrals:
9. $(9 \mathrm{pts}) \int(x-4) \cos \left(x^{2}-8 x+4\right) d x=$
10. (10pts) $\int_{0}^{1} \frac{e^{x}+1}{\left(e^{x}+x\right)^{2}} d x=$
11. (10pts) The rate at which a deer population is growing is $2+\frac{t}{4}$ deer per day.
a) Use the Net Change Theorem to find how much the population has grown in 8 days.
b) If there were initially 107 deer, how many were there after 8 days?
12. (8pts) Show that $2 \leq \int_{-1}^{1} e^{x^{2}} d x \leq 2 e$ without evaluating the integral.

Bonus. (10pts) A car is traveling at velocity 3 meters per second when it starts accelerating at constant acceleration. If it has traveled 108 meters during the 6 seconds that it accelerated, what is its acceleration?

