Calculus 1 - Exam 4
 MAT 250, Spring 2013 - D. Ivanšić

Differentiate and simplify where appropriate:

1. (3pts) $\frac{d}{d x} e^{\cos x}=$
2. $(4 \mathrm{pts}) \frac{d}{d x} \ln (\sec x+1)=$
3. $(6 \mathrm{pts}) \frac{d}{d u} \frac{u+1}{3^{u}}=$
4. $(7 \mathrm{pts}) \frac{d}{d t} \ln \sqrt[6]{\frac{t^{2}-4 t+1}{3 t^{-} 1}}=$
5. $(8 \mathrm{pts}) \frac{d}{d x}\left(\frac{1}{2} \arcsin x+\frac{1}{2} x \sqrt{1-x^{2}}\right)=$
6. (10pts) Use logarithmic differentiation to find the derivative of $y=\left(x^{2}-4 x+7\right)^{\sin x}$.

Find the limits. Use L'Hospital's rule where appropriate.
7. $(6 \mathrm{pts}) \lim _{x \rightarrow 0^{+}} \arctan \left(\frac{x+2}{x}\right)=$
8. (8pts) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=$
9. (6pts) $\lim _{x \rightarrow \infty} x e^{-x}=$
10. (10pts) $\lim _{x \rightarrow \infty}\left(1+x^{2}\right)^{\frac{1}{x}}=$
11. (10pts) Find the critical points of the function $f(x)=x^{\frac{1}{3}}\left(x^{2}+9 x\right)$.
12. (12pts) Let $f(x)=\left(x^{2}-3 x-3\right) e^{x}$. Find the absolute minimum and maximum values of f on the interval $[0,4]$.
13. (10pts) Suppose θ is given implicitly as a function of x by $\tan \theta=\sqrt{x^{2}-1}$.
a) Use implicit differentiation to find θ^{\prime}.
b) Using a trigonometric picture, express θ^{\prime} only in terms of x.

Bonus. (10pts) Suppose that $\lim _{x \rightarrow \infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} g(x)=\infty$. Recall that we say $f(x)$ grows to infinity slower than $g(x)$ if $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0$.
a) If $\lim _{x \rightarrow \infty} f(x)=\infty$, show that $\lim _{x \rightarrow \infty} \frac{\ln f(x)}{f(x)}=0$.
b) If $\lim _{x \rightarrow \infty} f(x)=\infty$, show that there exists a function that grows to infinity slower than $f(x)$. This means there does not exist a "slowest-growing" function to infinity.

