Integration Theory - Exam 1
 MAT 725, Fall 2015 - D. Ivanšić

Name:

Do all the theory problems. Then do five problems, at least two of which are of type B or C. If you do more than five, best five will be counted.

Theory 1. (3pts) Define the uniform norm of a bounded function.
Theory 2. (3pts) State the theorem on interchange of limit and integral.
Theory 3. (3pts) Define when a function $f:[a, b] \rightarrow \mathbf{R}$ is of bounded variation.

Type A problems (5pts Each)

A1. Show that the sequence of functions $f_{n}(x)=\frac{2^{-n x}}{1+n x^{2}}$ does not converge uniformly to 0 on $[0,1]$.
A2. Show that $\lim _{n \rightarrow \infty} \int_{0}^{1} \sin \left(\frac{x^{2}}{n}\right) d x=0$.
A3. As previously defined, let $x^{a}=E(a L(x))$, where E, L are the exponential and logarithmic functions. Show 1) $(x y)^{a}=x^{a} y^{a} \quad$ 2) $L\left(x^{a}\right)=a L(x)$.
A4. Find the variation of the function $f(x)=\sin x$ on the interval $[0,4 \pi]$.
A5. The curve C is given by $\mathbf{r}:[0,1] \rightarrow \mathbf{R}^{3}, \mathbf{r}(t)=\left(5 t, 2 t^{\frac{3}{2}}, t^{2}\right)$. Show that C is rectifiable and give an upper bound for its length.

Type B problems (8pts Each)

B1. Let $f_{n}: \mathbf{R} \rightarrow \mathbf{R}$ be the sequence of functions given by $f_{n}(x)=\frac{1}{1+n^{2} x^{2}}$. Show that
a) $\left(f_{n}\right)$ converges pointwise to a function f.
b) $\left(f_{n}\right)$ converges uniformly on $[a, \infty)$ for every $a>0$.
c) $\left(f_{n}\right)$ does not converge uniformly on $[0, \infty)$.

B2. Find a rational number (it doesn't have to be simplified to form $\frac{m}{n}$) that approximates $\sqrt[3]{e}$ with accuracy 10^{-4}.
B3. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ has the properties: $f^{\prime \prime}(x)=\frac{1}{2} f(x)$, and $f(0)=f^{\prime}(0)=0$. Show that $f(x)=0$ for all $x \in \mathbf{R}$.
B4. Show: if $f:[a, b] \rightarrow \mathbf{R}$ is of bounded variation, then so is f^{2}, where $f^{2}(x)=(f(x))^{2}$.
B5. Suppose $g: \mathbf{R} \rightarrow \mathbf{R}$ has a continuous derivative, and $f:[a, b] \rightarrow \mathbf{R}$ is of bounded variation. Show that $g \circ f:[a, b] \rightarrow \mathbf{R}$ is of bounded variation.

Type C problems (12pts Each)

$\mathbf{C} 1$. Does the converse to $\mathbf{B} 4$ hold: if f^{2} is of bounded variation, is f ?

Integration Theory - Exam 2
MAT 725, Fall 2015 - D. Ivanšić

Name:

Do all the theory problems. Then do five problems, at least two of which are of type B or C. If you do more than five, best five will be counted.

Theory 1. (3pts) Define a Riemann-Stieltjes sum of f with respect to ϕ for functions $f, \phi:[a, b] \rightarrow \mathbf{R}$. Then state when f has Riemann Stieltjes integral L with respect to ϕ.
Theory 2. (3pts) Define a point of closure of a set and the closure of a set.
Theory 3. (3pts) Define the Lebesgue outer measure of a set $A \subseteq \mathbf{R}$.

Type A problems (5pts each)

A1. Calculate $\int_{0}^{3}(2 x+1) d x^{2}$.
A2. Use the definition to show that the set $[1, \infty)$ is not compact.
A3. Let $A=\cup_{k=1}^{\infty}\left(\frac{1}{2 k}, \frac{1}{2 k-1}\right)$ (union of intervals). Determine $\operatorname{Int} A$ and \bar{A} with explanation.
A4. Show that a closed interval $[a, b]$ is a G_{δ}-set, and an open interval (a, b) is an F_{σ}-set.
A5. Let $A=\left\{\left.\frac{m}{2^{n}} \right\rvert\, m, n \in \mathbf{Z}, m\right.$ odd, $\left.n \geq 0\right\}$. What is $m^{*} A$? Justify. ($m^{*}=$ outer measure)
A6. Let $m: \mathcal{A} \rightarrow[0, \infty]$ be a measure, $A, B \in \mathcal{A}$ and $A \subseteq B$. If $m A=0$, show that $m B=m(B-A)$.

Type B problems (8pts Each)

B1. Show: if $\int_{a}^{b} f d \phi$ exists, and $a<c<b$, then $\int_{a}^{c} f d \phi$ exists.
B2. Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function of bounded variation. Justify why $\int_{a}^{b} f d f$ exists and use Riemann-Stieltjes integration by parts to find it.

B3. Show that for any two sets $A, B \subseteq \mathbf{R}, \operatorname{Int}(A \cap B)=\operatorname{Int} A \cap \operatorname{Int} B$.
B4. What is the closure of the set A from A5? Justify precisely.
B5. Let $A=\mathbf{Q} \cap[0,1]$. Show that A is not compact and find a sequence in A that does not have a subsequence which converges to an element of A.
B6. Let $\mathcal{F}=\{(a, \infty) \mid a \in \mathbf{R}\}$. Show that the smallest σ-algebra that contains \mathcal{F} is the Borel sets.

B7. Let $m: \mathcal{A} \rightarrow[0, \infty]$ be a measure, $A, B \in \mathcal{A}$. Show that $m(A \cup B)=m A+m B-$ $m(A \cap B)$.

Type C problems (12pts Each)

C1. Let \mathcal{A} be the collection of all sets $A \subseteq \mathbf{R}$ such that either A or A^{c} is countable.
a) Show that \mathcal{A} is a σ-algebra (don't forget that we consider \emptyset to be finite).
b) Give an example of a subset of \mathbf{R} that is not in \mathcal{A}.

Integration Theory - Exam 3
MAT 725, Fall 2015 - D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least two of which are of type B or C. If you do more than five, best five will be counted.

Theory 1. (3pts) Define a measurable set.
Theory 2. (3pts) State the theorem on outer approximation by open sets.
Theory 3. (3pts) State Vitali's theorem on existence of nonmeasurable sets.

Type A problems (5pts Each)
A1. Let A be any subset of \mathbf{R}. If $-A=\{-x \mid x \in A\}$, show that $m^{*}(-A)=m^{*} A$
A2. Let E be measurable and $E \subseteq[0,1]$. Set $E_{k}=E \cap\left(\frac{1}{k}, 1-\frac{1}{k}\right)$. What is $\lim _{k \rightarrow \infty} m E_{k}$?
A3. Let $\left\{E_{k} \mid k \in \mathbf{N}\right\}$ be a collection of measurable sets. Show that $\bigcup_{k=1}^{\infty} E_{k}$ can be written as a disjoint union of measurable sets.
A4. Let E have finite outer measure. Show that E is measurable if and only if there exists an F_{σ}-set $F \subset E$ such that $m^{*} F=m^{*} E$.

A5. Show that a nonmeasurable set must be uncountable.
A6. Show that every nonmeasurable set has a proper subset that is nonmeasurable.

Type B problems (8pts Each)

B1. Show that the smallest σ-algebra containing intervals of form $(a, b], a, b<\infty$, is the Borel sets.

B2. Give an example of an open unbounded set that has finite measure.
B3. Suppose E is measurable and has finite measure. Show that for every $\epsilon>0$ there exists an $n \in \mathbf{N}$ such that $m(E-[-n, n])<\epsilon$. (In other words, most of E 's measure is in a bounded interval.)
B4. We have shown in that for any set E with finite outer measure there is a G_{δ}-set $G \supseteq E$ such that $m^{*} G=m^{*} E$. Use this fact to show that when E is not measurable, it fails the definition using a set A that may be taken to be a G_{δ}-set.

B5. Show that a union of two measurable sets is measurable either by definition or by using inner approximation by closed sets.
B6. Show: if E is measurable and has finite measure, then for every $\epsilon>0, E$ is union of finitely many measurable sets of measure $<\epsilon$.

C1. Let E be a measurable set with finite measure M. Define $f: \mathbf{R} \rightarrow[0, M]$ by setting $f(x)=m((-\infty, x] \cap E)$.
a) Show that f is increasing and the codomain is correct.
b) Show that f is continuous - don't do anything difficult, because it's not.
c) Show that the range of f contains the open interval $(0, M)$. In particular, there exists a set whose measure is $M / 2$.
d) Give an example of a set E where the range equals $(0, M)$, so $f(x) \neq 0, M$ for all $x \in \mathbf{R}$.

