Integration Theory — Problem Farm 1.1
MAT 725, Fall 2015 — D. Ivansié Bounded Variation

TYPE A PROBLEMS (5PTS EACH)

A1. Show that if f is of bounded variation on [a,b], then f is bounded on [a, b].

A2. Let f,g: [a,b] = R be of bounded variation. Show that for any ¢ € R the functions
f £ g, cf are of bounded variation.

A3. Let f(z) =siniif 2 € (0,1], f(0) =0. Is f of bounded variation on [0, 1]?
TYPE B PROBLEMS (8PTS EACH)

B1. Let f,g: [a,b] — R be of bounded variation. Show that f - g is of bounded variation.
Additionally, if there exists an € > 0 such that g(x) > € on [a, b], show that % is of bounded
variation.

B2. Let f(z) = 2?sin i if z € (0,1], f(0) = 0. Show that f is of bounded variation on [0, 1].
Why can’t you use Theorem 1.107 (Use the Mean Value Theorem in Vp instead.)

B3. Let f, : [a,b] — R be a sequence of functions of bounded variation so that f, — f
(pointwise). If V,, is the variation of f,, and V,, < M < oo for all n € N, show that f is a
function of bounded variation and that V' < M.

B4. Give an example of a pointwise-convergent sequence f,, of functions of bounded variation
whose limit is not of bounded variation.

B5. Let f : [a,0] — R be a function such that for every 6 > 0, f : [a + 0,b] — R is of
bounded variation. Assume further that Vioysy < M < oo for every 6 > 0. Show that
[ :[a,b] — R is of bounded variation. Give a (super-simple) counterexample to show that
Viay) < M does not necessarily follow. What additional condition will guarantee Vjq 5 < M7

B6. Let f : [a,b] — R be a continuous function of bounded variation. Then, like in the proof
of Jordan’s Theorem, we define the function V(z) = Vj,4. Show that V(x) is continuous,
and that this implies that P(z) and N(z) are continuous, too. Hints: use additivity of V'
over intervals to get continuity of V(). Show first this tool for estimating Vi 4 : if ¢ € [a, 0],
x >c,and P = (a,z1,...,2, 2,¢, ) is a partition of [a, x] that includes ¢, then

V’P - |f(l’) - f(C)| < Wa,a:] - ‘/[c,a:]-
TyPE C PROBLEMS (12PTS EACH)

C1. Is Thomae’s function (5.1.6.h in Bartle & Sherbert) of bounded variation on [0,1]7



Integration Theory — Problem Farm 1.2
MAT 725, Fall 2015 — D. Ivansié Rectifiable Curves

TYPE A PROBLEMS (5PTS EACH)

Al. Let C be the curve r : [0,1] — R3: r(¢t) = (1 — t)(ag, bo, co) + t(a1,b1,¢1). Find L(C)
from the definition.

A2. Let C be the curve r : [a,b] — R?: r(t) = (ag, bo, o), if t € [a, c] and r(t) = (a1, b1, ¢1),
if ¢ € (¢, b] for some ¢ € [a,b). Find L(C') from the definition.

A3. Let f : [a,b] =& R be a function. Parametrize the graph C' of f in the usual way:
r(t) = (t, f(t)), t € [a,b]. Show that C is rectifiable if and only if f is of bounded variation.

A4. Show that a curve C given by r : [a,b] — R3 is rectifiable if and only if both curves
r|l0q : [a,¢] = R* and rfpy : [c,b] — R? are rectifiable. (There is no need for writing out
sums here, just use existing theorems.)

A5. For any a,e > 0, show that v/a + € < \/a + \/e. When does equality hold?
TYPE B PROBLEMS (8PTS EACH)

B1. Suppose that a curve C' given by r : [a,b] — R3 is rectifiable. If C; and C, are
the restrictions r| : [a,¢] — R* and rfy : [c,b] — R? (rectifiable by A4), show that
L(C) = L(Cy) + L(Cy). (See proof of Theorem 1.2.)

B2. Suppose rectifiable curves C; and Cy are given by continuous functions r; : [a,c] — R?
and ry : [c,b] — R3. Define r : [a,b] — R3 as r(t) = ry(t), if t € [a,c], and r(t) = ro(t), if
t € (¢,b]. Show that L(C) = L(Cy) + L(Cy) + d(r1(c),re(c)), where d is distance between
points in R3.

B3. Prove the theorem at the end of section 1.2: if C' is the curve r : [a,b] — R? r(t) =
(x(t),y(t), 2(t)), and z, y, z all have continuous derivatives on [a, b], then

L(C) = / VIO + O + 2 ()P dt.

Start with the sum lp and use the Mean Value Theorem on xz(t;) — x(t;—1), etc. Note
that it will give you different points wu;, v;, w; in the interval [t;_1,t;] for each of the z, y
and z components. Now use A5 to show this expression can be made close to one where
u; = v; = w;, which is a Riemann sum for the function \/x/(t)2 + v/(¢)% + 2'(¢)%

TyPE C PROBLEMS (12PTS EACH)

C1. Let C be a curve r : [a,b] — R?. Show that L(C) = limyp_g| lp, that is, show that for
every M < L(C') there exists a 6 > 0, such that if ||P|| < d, then Ip > M. (See the proof of
1.9.)



Integration Theory — Problem Farm 1.3
MAT 725, Fall 2015 — D. Ivansié Riemann-Stieltjes Integral

TYPE A PROBLEMS (5PTS EACH)

A1. Use the definition to find f; fd¢ in the following cases:
a) ¢ is a constant function, b) f is constant and ¢ is increasing.

A2. Use the definition to find fab fdo if f is constant.

A3. Compute fog 2? dsin z using either B2.

A4. Show Cauchy’s criterion: f is Riemann-Stieltjes integrable if and only if for every € > 0
there exists a ¢ > 0 such that for any two tagged partitions P, Q with [|P]|, [|Q[| < ¢ we
have ‘S<f77)) - S(f? Q)| < €.

A5. Give an example (simple — A1 can help!) where a < ¢ < b and [’ fd¢ and fcb fdo
both exist, but f: f d¢ does not. Does this contradict Theorem 2.177

A6. Let f;qubl and fab f do exist. Show that f:fd(¢1 + ¢) exists and that
J2 F i+ 60)=[ f dént [, f dos.

AT. Prove the Mean Value Theorem: If f is continuous and ¢ is increasing on [a, b], then
there exists a ¢ € [a, b] such that ff fdo= f(c)(o(b) — p(a))

TYPE B PROBLEMS (8PTS EACH)

B1. Suppose ¢ : [a,b] — R is a step with subdivision a = ag < a1 < -+ < a,, = b of [a, b]

such that ¢|(s, , 4, 18 constant. If we set ¢(a; ) = lim, - ¢(z) and ¢(a;) = lim,_, + ¢(x)
_ b m _ .

(6(ay) = 6(a), dash) = 6(v)), show that 7 fdg = S, f(ar)(é(a}) — é(a;)). Hint: show

first for the case m = 1 with ¢ continuous except at ag, then for the case m = 2 with ¢

continuous except at a;. Now apply Theorem 2.17.

B2. If f and ¢’ are both continuous, prove that fabqub = fab f¢', where the latter is a
Riemann integral.

B3. Prove Theorem 2.17: fab fdo exists, and a < ¢ < b, then f: fd¢ and fcb f do both exist,

and fab fdo= fac fdo+ fcb fdo. (See proof of corresponding theorem for Riemann integrals,
7.2.9.)

TyPE C PROBLEMS (12PTS EACH)

C1. Suppose f is continuous and ¢ is of bounded variation on [a, b]. Show:
a) ¥(z) = [ fd¢ is of bounded variation on [a, b].
b) If g is continuous on [a, b], then f;gdw = fab gf do.

C2. Suppose f is continuous and ¢ and 1) are of bounded variation on [a,b]. Show that

[ Fdow) = [0 fodo+ [0 fodu.



Integration Theory — Problem Farm 1.4
MAT 725, Fall 2015 — D. Ivansié Open and Closed Sets

Al.
A2,
A3.
A4.
A5.

B1. For a set A C R, show that » € A if and only if there exists a sequence (z,,) such that
xn, € A for all n € N and z,, — x. Conclude that A is closed if and only if every convergent

TYPE A PROBLEMS (5PTS EACH)

Let A= {1+ (=1)"% | n € N}. Determine A with explanation.
Let A= Q°N0,1]. Determine A with explanation.

Determine Int Q with explanation.

Show that a finite subset of R is always closed.

Is A= {2 | n € N} compact? Justify your answer.

TYPE B PROBLEMS (8PTS EACH)

sequence in A converges to an element of A.

B2.

For a set A C R, show that Int A = Uyca, v open U. Conclude that Int A is the largest

open set contained in A in the sense that if U is open and U C A, then U C Int A.

B3. For aset A C R, show that A = NAcF, F dosed F'. Conclude that A is the smallest closed

set that contains A in the sense that if F is closed and A C F, then A C F.

B4. Show that a set A C R is compact if and only if every sequence in A has a subsequence

that converges to an element of A. (Slap Borel’s Heine.)

B5.

Let f : R — R. Show that f is continuous if and only if for every open set V' C R,

f~YV) is an open set.

B6. For a set A C R, show that Int(A°) = (A)°.

B7. For sets A, B C R, show that AU B = AU B.

TyPE C PROBLEMS (12PTS EACH)

(none)



