Type A problems (5pts each)

A1. Show that if f is of bounded variation on $[a, b]$, then f is bounded on $[a, b]$.
A2. Let $f, g:[a, b] \rightarrow \mathbf{R}$ be of bounded variation. Show that for any $c \in \mathbf{R}$ the functions $f \pm g, c f$ are of bounded variation.

A3. Let $f(x)=\sin \frac{1}{x}$ if $x \in(0,1], f(0)=0$. Is f of bounded variation on $[0,1]$?

Type B problems (8pts each)

B1. Let $f, g:[a, b] \rightarrow \mathbf{R}$ be of bounded variation. Show that $f \cdot g$ is of bounded variation. Additionally, if there exists an $\epsilon>0$ such that $g(x) \geq \epsilon$ on $[a, b]$, show that $\frac{f}{g}$ is of bounded variation.

B2. Let $f(x)=x^{2} \sin \frac{1}{x}$ if $x \in(0,1], f(0)=0$. Show that f is of bounded variation on $[0,1]$. Why can't you use Theorem 1.10? (Use the Mean Value Theorem in $V_{\mathcal{P}}$ instead.)

B3. Let $f_{n}:[a, b] \rightarrow \mathbf{R}$ be a sequence of functions of bounded variation so that $f_{n} \rightarrow f$ (pointwise). If V_{n} is the variation of f_{n}, and $V_{n} \leq M<\infty$ for all $n \in \mathbf{N}$, show that f is a function of bounded variation and that $V \leq M$.

B4. Give an example of a pointwise-convergent sequence f_{n} of functions of bounded variation whose limit is not of bounded variation.

B5. Let $f:[a, b] \rightarrow \mathbf{R}$ be a function such that for every $\delta>0, f:[a+\delta, b] \rightarrow \mathbf{R}$ is of bounded variation. Assume further that $V_{[a+\delta, b]} \leq M<\infty$ for every $\delta>0$. Show that $f:[a, b] \rightarrow \mathbf{R}$ is of bounded variation. Give a (super-simple) counterexample to show that $V_{[a, b]} \leq M$ does not necessarily follow. What additional condition will guarantee $V_{[a, b]} \leq M$?

B6. Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function of bounded variation. Then, like in the proof of Jordan's Theorem, we define the function $V(x)=V_{[a, x]}$. Show that $V(x)$ is continuous, and that this implies that $P(x)$ and $N(x)$ are continuous, too. Hints: use additivity of V over intervals to get continuity of $V(x)$. Show first this tool for estimating $V_{[c, x]}:$ if $c \in[a, b]$, $x>c$, and $\mathcal{P}=\left(a, x_{1}, \ldots, x_{n-2}, c, x\right)$ is a partition of $[a, x]$ that includes c, then

$$
V_{\mathcal{P}}-|f(x)-f(c)| \leq V_{[a, x]}-V_{[c, x]} .
$$

Type C problems (12pts Each)

C1. Is Thomae's function (5.1.6.h in Bartle \& Sherbert) of bounded variation on $[0,1]$?

Rectifiable Curves

Type A problems (5pts Each)

A1. Let C be the curve $\mathbf{r}:[0,1] \rightarrow \mathbf{R}^{3}: \mathbf{r}(t)=(1-t)\left(a_{0}, b_{0}, c_{0}\right)+t\left(a_{1}, b_{1}, c_{1}\right)$. Find $L(C)$ from the definition.

A2. Let C be the curve $\mathbf{r}:[a, b] \rightarrow \mathbf{R}^{3}: \mathbf{r}(t)=\left(a_{0}, b_{0}, c_{0}\right)$, if $t \in[a, c]$ and $\mathbf{r}(t)=\left(a_{1}, b_{1}, c_{1}\right)$, if $t \in(c, b]$ for some $c \in[a, b)$. Find $L(C)$ from the definition.

A3. Let $f:[a, b] \rightarrow \mathbf{R}$ be a function. Parametrize the graph C of f in the usual way: $\mathbf{r}(t)=(t, f(t)), t \in[a, b]$. Show that C is rectifiable if and only if f is of bounded variation.

A4. Show that a curve C given by $\mathbf{r}:[a, b] \rightarrow \mathbf{R}^{3}$ is rectifiable if and only if both curves $\left.\mathbf{r}\right|_{[a, c]}:[a, c] \rightarrow \mathbf{R}^{3}$ and $\left.\mathbf{r}\right|_{[c, b]}:[c, b] \rightarrow \mathbf{R}^{3}$ are rectifiable. (There is no need for writing out sums here, just use existing theorems.)

A5. For any $a, \epsilon \geq 0$, show that $\sqrt{a+\epsilon} \leq \sqrt{a}+\sqrt{\epsilon}$. When does equality hold?

Type B problems (8pts Each)

B1. Suppose that a curve C given by $\mathbf{r}:[a, b] \rightarrow \mathbf{R}^{3}$ is rectifiable. If C_{1} and C_{2} are the restrictions $\left.\mathbf{r}\right|_{[a, c]}:[a, c] \rightarrow \mathbf{R}^{3}$ and $\left.\mathbf{r}\right|_{[c, b]}:[c, b] \rightarrow \mathbf{R}^{3}$ (rectifiable by A4), show that $L(C)=L\left(C_{1}\right)+L\left(C_{2}\right)$. (See proof of Theorem 1.2.)

B2. Suppose rectifiable curves C_{1} and C_{2} are given by continuous functions $\mathbf{r}_{1}:[a, c] \rightarrow \mathbf{R}^{3}$ and $\mathbf{r}_{2}:[c, b] \rightarrow \mathbf{R}^{3}$. Define $\mathbf{r}:[a, b] \rightarrow \mathbf{R}^{3}$ as $\mathbf{r}(t)=r_{1}(t)$, if $t \in[a, c]$, and $\mathbf{r}(t)=r_{2}(t)$, if $t \in(c, b]$. Show that $L(C)=L\left(C_{1}\right)+L\left(C_{2}\right)+d\left(\mathbf{r}_{1}(c), \mathbf{r}_{2}(c)\right)$, where d is distance between points in \mathbf{R}^{3}.

B3. Prove the theorem at the end of section 1.2: if C is the curve $\mathbf{r}:[a, b] \rightarrow \mathbf{R}^{3}, \mathbf{r}(t)=$ $(x(t), y(t), z(t))$, and x, y, z all have continuous derivatives on $[a, b]$, then

$$
L(C)=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Start with the sum $l_{\mathcal{P}}$ and use the Mean Value Theorem on $x\left(t_{i}\right)-x\left(t_{i-1}\right)$, etc. Note that it will give you different points u_{i}, v_{i}, w_{i} in the interval $\left[t_{i-1}, t_{i}\right]$ for each of the x, y and z components. Now use A5 to show this expression can be made close to one where $u_{i}=v_{i}=w_{i}$, which is a Riemann sum for the function $\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}}$.

Type C problems (12pts Each)

C1. Let C be a curve $\mathbf{r}:[a, b] \rightarrow \mathbf{R}^{3}$. Show that $L(C)=\lim _{\|\mathcal{P} \rightarrow 0\|} l_{\mathcal{P}}$, that is, show that for every $M<L(C)$ there exists a $\delta>0$, such that if $\|\mathcal{P}\|<\delta$, then $l_{\mathcal{P}}>M$. (See the proof of 1.9.)

Riemann-Stieltjes Integral

Type A problems (5pts Each)

A1. Use the definition to find $\int_{a}^{b} f d \phi$ in the following cases:
a) ϕ is a constant function,
b) f is constant and ϕ is increasing.

A2. Use the definition to find $\int_{a}^{b} f d \phi$ if f is constant.
A3. Compute $\int_{0}^{\frac{\pi}{2}} x^{2} d \sin x$ using either B2.
A4. Show Cauchy's criterion: f is Riemann-Stieltjes integrable if and only if for every $\epsilon>0$ there exists a $\delta>0$ such that for any two tagged partitions $\dot{\mathcal{P}}, \dot{\mathcal{Q}}$ with $\|\dot{\mathcal{P}}\|,\|\dot{\mathcal{Q}}\|<\delta$ we have $|S(f, \dot{\mathcal{P}})-S(f, \dot{\mathcal{Q}})|<\epsilon$.

A5. Give an example (simple - A1 can help!) where $a<c<b$ and $\int_{a}^{c} f d \phi$ and $\int_{c}^{b} f d \phi$ both exist, but $\int_{a}^{b} f d \phi$ does not. Does this contradict Theorem 2.17?

A6. Let $\int_{a}^{b} f d \phi_{1}$ and $\int_{a}^{b} f d \phi_{2}$ exist. Show that $\int_{a}^{b} f d\left(\phi_{1}+\phi_{2}\right)$ exists and that $\int_{a}^{b} f d\left(\phi_{1}+\phi_{2}\right)=\int_{a}^{b} f d \phi_{1}+\int_{a}^{b} f d \phi_{2}$.

A7. Prove the Mean Value Theorem: If f is continuous and ϕ is increasing on $[a, b]$, then there exists a $c \in[a, b]$ such that $\int_{a}^{b} f d \phi=f(c)(\phi(b)-\phi(a))$

Type B problems (8pts Each)

B1. Suppose $\phi:[a, b] \rightarrow \mathbf{R}$ is a step with subdivision $a=a_{0}<a_{1}<\cdots<a_{m}=b$ of $[a, b]$ such that $\left.\phi\right|_{\left(a_{i-1}, a_{i}\right)}$ is constant. If we set $\phi\left(a_{i}^{-}\right)=\lim _{x \rightarrow a_{i}^{-}} \phi(x)$ and $\phi\left(a_{i}^{+}\right)=\lim _{x \rightarrow a_{i}^{+}} \phi(x)$ $\left(\phi\left(a_{0}^{-}\right)=\phi(a), \phi\left(a_{m}^{+}\right)=\phi(b)\right)$, show that $\int_{a}^{b} f d \phi=\sum_{i=0}^{m} f\left(a_{i}\right)\left(\phi\left(a_{i}^{+}\right)-\phi\left(a_{i}^{-}\right)\right)$. Hint: show first for the case $m=1$ with ϕ continuous except at a_{0}, then for the case $m=2$ with ϕ continuous except at a_{1}. Now apply Theorem 2.17.

B2. If f and ϕ^{\prime} are both continuous, prove that $\int_{a}^{b} f d \phi=\int_{a}^{b} f \phi^{\prime}$, where the latter is a Riemann integral.

B3. Prove Theorem 2.17: $\int_{a}^{b} f d \phi$ exists, and $a<c<b$, then $\int_{a}^{c} f d \phi$ and $\int_{c}^{b} f d \phi$ both exist, and $\int_{a}^{b} f d \phi=\int_{a}^{c} f d \phi+\int_{c}^{b} f d \phi$. (See proof of corresponding theorem for Riemann integrals, 7.2.9.)

Type C problems (12pts each)

C1. Suppose f is continuous and ϕ is of bounded variation on $[a, b]$. Show:
a) $\psi(x)=\int_{a}^{x} f d \phi$ is of bounded variation on $[a, b]$.
b) If g is continuous on $[a, b]$, then $\int_{a}^{b} g d \psi=\int_{a}^{b} g f d \phi$.

C2. Suppose f is continuous and ϕ and ψ are of bounded variation on $[a, b]$. Show that $\int_{a}^{b} f d(\phi \psi)=\int_{a}^{b} f \psi d \phi+\int_{a}^{b} f \phi d \psi$.

Open and Closed Sets

Type A problems (5pts Each)

A1. Let $A=\left\{\left.1+(-1)^{n} \frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$. Determine \bar{A} with explanation.
A2. Let $A=\mathbf{Q}^{c} \cap[0,1]$. Determine \bar{A} with explanation.
A3. Determine Int \mathbf{Q} with explanation.
A4. Show that a finite subset of \mathbf{R} is always closed.
A5. Is $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$ compact? Justify your answer.

Type B problems (8pts each)

B1. For a set $A \subseteq \mathbf{R}$, show that $x \in \bar{A}$ if and only if there exists a sequence $\left(x_{n}\right)$ such that $x_{n} \in A$ for all $n \in \mathbf{N}$ and $x_{n} \rightarrow x$. Conclude that A is closed if and only if every convergent sequence in A converges to an element of A.

B2. For a set $A \subseteq \mathbf{R}$, show that $\operatorname{Int} A=\cup_{U \subset A, U \text { open }} U$. Conclude that $\operatorname{Int} A$ is the largest open set contained in A in the sense that if U is open and $U \subseteq A$, then $U \subseteq \operatorname{Int} A$.

B3. For a set $A \subseteq \mathbf{R}$, show that $\bar{A}=\cap_{A \subset F, F}$ closed F. Conclude that \bar{A} is the smallest closed set that contains A in the sense that if F is closed and $A \subseteq F$, then $\bar{A} \subseteq F$.

B4. Show that a set $A \subset \mathbf{R}$ is compact if and only if every sequence in A has a subsequence that converges to an element of A. (Slap Borel's Heine.)

B5. Let $f: \mathbf{R} \rightarrow \mathbf{R}$. Show that f is continuous if and only if for every open set $V \subseteq \mathbf{R}$, $f^{-1}(V)$ is an open set.

B6. For a set $A \subseteq \mathbf{R}$, show that $\operatorname{Int}\left(A^{c}\right)=(\bar{A})^{c}$.
B7. For sets $A, B \subseteq \mathbf{R}$, show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$.

Type C problems (12pts Each)
(none)

