Type A problems (5pts each)

A1. Show that if f is of bounded variation on [a, b], then f is bounded on [a, b].

A2. Let $f, g : [a, b] \to \mathbf{R}$ be of bounded variation. Show that for any $c \in \mathbf{R}$ the functions $f \pm g, cf$ are of bounded variation.

A3. Let $f(x) = \sin \frac{1}{x}$ if $x \in (0, 1]$, f(0) = 0. Is f of bounded variation on [0, 1]?

TYPE B PROBLEMS (8PTS EACH)

B1. Let $f, g : [a, b] \to \mathbf{R}$ be of bounded variation. Show that $f \cdot g$ is of bounded variation. Additionally, if there exists an $\epsilon > 0$ such that $g(x) \ge \epsilon$ on [a, b], show that $\frac{f}{g}$ is of bounded variation.

B2. Let $f(x) = x^2 \sin \frac{1}{x}$ if $x \in (0, 1]$, f(0) = 0. Show that f is of bounded variation on [0, 1]. Why can't you use Theorem 1.10? (Use the Mean Value Theorem in $V_{\mathcal{P}}$ instead.)

B3. Let $f_n : [a, b] \to \mathbf{R}$ be a sequence of functions of bounded variation so that $f_n \to f$ (pointwise). If V_n is the variation of f_n , and $V_n \leq M < \infty$ for all $n \in \mathbf{N}$, show that f is a function of bounded variation and that $V \leq M$.

B4. Give an example of a pointwise-convergent sequence f_n of functions of bounded variation whose limit is not of bounded variation.

B5. Let $f : [a, b] \to \mathbf{R}$ be a function such that for every $\delta > 0$, $f : [a + \delta, b] \to \mathbf{R}$ is of bounded variation. Assume further that $V_{[a+\delta,b]} \leq M < \infty$ for every $\delta > 0$. Show that $f : [a, b] \to \mathbf{R}$ is of bounded variation. Give a (super-simple) counterexample to show that $V_{[a,b]} \leq M$ does not necessarily follow. What additional condition will guarantee $V_{[a,b]} \leq M$?

B6. Let $f : [a, b] \to \mathbf{R}$ be a continuous function of bounded variation. Then, like in the proof of Jordan's Theorem, we define the function $V(x) = V_{[a,x]}$. Show that V(x) is continuous, and that this implies that P(x) and N(x) are continuous, too. Hints: use additivity of Vover intervals to get continuity of V(x). Show first this tool for estimating $V_{[c,x]}$: if $c \in [a, b]$, x > c, and $\mathcal{P} = (a, x_1, \ldots, x_{n-2}, c, x)$ is a partition of [a, x] that includes c, then

$$V_{\mathcal{P}} - |f(x) - f(c)| \le V_{[a,x]} - V_{[c,x]}.$$

Type C problems (12pts each)

C1. Is Thomae's function (5.1.6.h in Bartle & Sherbert) of bounded variation on [0,1]?

Rectifiable Curves

Type A problems (5pts each)

A1. Let C be the curve $\mathbf{r} : [0,1] \to \mathbf{R}^3$: $\mathbf{r}(t) = (1-t)(a_0, b_0, c_0) + t(a_1, b_1, c_1)$. Find L(C) from the definition.

A2. Let C be the curve $\mathbf{r} : [a, b] \to \mathbf{R}^3$: $\mathbf{r}(t) = (a_0, b_0, c_0)$, if $t \in [a, c]$ and $\mathbf{r}(t) = (a_1, b_1, c_1)$, if $t \in (c, b]$ for some $c \in [a, b]$. Find L(C) from the definition.

A3. Let $f : [a, b] \to \mathbf{R}$ be a function. Parametrize the graph C of f in the usual way: $\mathbf{r}(t) = (t, f(t)), t \in [a, b]$. Show that C is rectifiable if and only if f is of bounded variation.

A4. Show that a curve C given by $\mathbf{r} : [a, b] \to \mathbf{R}^3$ is rectifiable if and only if both curves $\mathbf{r}|_{[a,c]} : [a,c] \to \mathbf{R}^3$ and $\mathbf{r}|_{[c,b]} : [c,b] \to \mathbf{R}^3$ are rectifiable. (There is no need for writing out sums here, just use existing theorems.)

A5. For any $a, \epsilon \ge 0$, show that $\sqrt{a+\epsilon} \le \sqrt{a} + \sqrt{\epsilon}$. When does equality hold?

TYPE B PROBLEMS (8PTS EACH)

B1. Suppose that a curve C given by $\mathbf{r} : [a, b] \to \mathbf{R}^3$ is rectifiable. If C_1 and C_2 are the restrictions $\mathbf{r}|_{[a,c]} : [a,c] \to \mathbf{R}^3$ and $\mathbf{r}|_{[c,b]} : [c,b] \to \mathbf{R}^3$ (rectifiable by A4), show that $L(C) = L(C_1) + L(C_2)$. (See proof of Theorem 1.2.)

B2. Suppose rectifiable curves C_1 and C_2 are given by continuous functions $\mathbf{r}_1 : [a, c] \to \mathbf{R}^3$ and $\mathbf{r}_2 : [c, b] \to \mathbf{R}^3$. Define $\mathbf{r} : [a, b] \to \mathbf{R}^3$ as $\mathbf{r}(t) = r_1(t)$, if $t \in [a, c]$, and $\mathbf{r}(t) = r_2(t)$, if $t \in (c, b]$. Show that $L(C) = L(C_1) + L(C_2) + d(\mathbf{r}_1(c), \mathbf{r}_2(c))$, where d is distance between points in \mathbf{R}^3 .

B3. Prove the theorem at the end of section 1.2: if C is the curve $\mathbf{r} : [a, b] \to \mathbf{R}^3$, $\mathbf{r}(t) = (x(t), y(t), z(t))$, and x, y, z all have continuous derivatives on [a, b], then

$$L(C) = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} \, dt.$$

Start with the sum $l_{\mathcal{P}}$ and use the Mean Value Theorem on $x(t_i) - x(t_{i-1})$, etc. Note that it will give you different points u_i, v_i, w_i in the interval $[t_{i-1}, t_i]$ for each of the x, y and z components. Now use **A5** to show this expression can be made close to one where $u_i = v_i = w_i$, which is a Riemann sum for the function $\sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}$.

Type C problems (12pts each)

C1. Let *C* be a curve $\mathbf{r} : [a, b] \to \mathbf{R}^3$. Show that $L(C) = \lim_{||\mathcal{P} \to 0||} l_{\mathcal{P}}$, that is, show that for every M < L(C) there exists a $\delta > 0$, such that if $||\mathcal{P}|| < \delta$, then $l_{\mathcal{P}} > M$. (See the proof of 1.9.)

Type A problems (5pts each)

- A1. Use the definition to find $\int_a^b f \, d\phi$ in the following cases: a) ϕ is a constant function, b) f is constant and ϕ is increasing.
- **A2.** Use the definition to find $\int_a^b f \, d\phi$ if f is constant.

A3. Compute $\int_0^{\frac{\pi}{2}} x^2 d \sin x$ using either **B2**.

A4. Show Cauchy's criterion: f is Riemann-Stieltjes integrable if and only if for every $\epsilon > 0$ there exists a $\delta > 0$ such that for any two tagged partitions $\dot{\mathcal{P}}$, $\dot{\mathcal{Q}}$ with $||\dot{\mathcal{P}}||$, $||\dot{\mathcal{Q}}|| < \delta$ we have $|S(f, \dot{\mathcal{P}}) - S(f, \dot{\mathcal{Q}})| < \epsilon$.

A5. Give an example (simple — **A1** can help!) where a < c < b and $\int_a^c f d\phi$ and $\int_c^b f d\phi$ both exist, but $\int_a^b f d\phi$ does not. Does this contradict Theorem 2.17?

A6. Let $\int_a^b f \, d\phi_1$ and $\int_a^b f \, d\phi_2$ exist. Show that $\int_a^b f \, d(\phi_1 + \phi_2)$ exists and that $\int_a^b f \, d(\phi_1 + \phi_2) = \int_a^b f \, d\phi_1 + \int_a^b f \, d\phi_2$.

A7. Prove the Mean Value Theorem: If f is continuous and ϕ is increasing on [a, b], then there exists a $c \in [a, b]$ such that $\int_a^b f \, d\phi = f(c)(\phi(b) - \phi(a))$

TYPE B PROBLEMS (8PTS EACH)

B1. Suppose $\phi : [a, b] \to \mathbf{R}$ is a step with subdivision $a = a_0 < a_1 < \cdots < a_m = b$ of [a, b] such that $\phi|_{(a_{i-1}, a_i)}$ is constant. If we set $\phi(a_i^-) = \lim_{x \to a_i^-} \phi(x)$ and $\phi(a_i^+) = \lim_{x \to a_i^+} \phi(x)$ $(\phi(a_0^-) = \phi(a), \phi(a_m^+) = \phi(b))$, show that $\int_a^b f \, d\phi = \sum_{i=0}^m f(a_i)(\phi(a_i^+) - \phi(a_i^-))$. Hint: show first for the case m = 1 with ϕ continuous except at a_0 , then for the case m = 2 with ϕ continuous except at a_1 . Now apply Theorem 2.17.

B2. If f and ϕ' are both continuous, prove that $\int_a^b f \, d\phi = \int_a^b f \phi'$, where the latter is a Riemann integral.

B3. Prove Theorem 2.17: $\int_a^b f \, d\phi$ exists, and a < c < b, then $\int_a^c f \, d\phi$ and $\int_c^b f \, d\phi$ both exist, and $\int_a^b f \, d\phi = \int_a^c f \, d\phi + \int_c^b f \, d\phi$. (See proof of corresponding theorem for Riemann integrals, 7.2.9.)

Type C problems (12pts each)

C1. Suppose f is continuous and ϕ is of bounded variation on [a, b]. Show: a) $\psi(x) = \int_a^x f \, d\phi$ is of bounded variation on [a, b]. b) If g is continuous on [a, b], then $\int_a^b g \, d\psi = \int_a^b g f \, d\phi$.

C2. Suppose f is continuous and ϕ and ψ are of bounded variation on [a, b]. Show that $\int_a^b f \, d(\phi \psi) = \int_a^b f \psi \, d\phi + \int_a^b f \phi \, d\psi$.

Type A problems (5pts each)

A1. Let $A = \{1 + (-1)^n \frac{1}{n} \mid n \in \mathbb{N}\}$. Determine \overline{A} with explanation.

A2. Let $A = \mathbf{Q}^c \cap [0, 1]$. Determine \overline{A} with explanation.

A3. Determine $\operatorname{Int} \mathbf{Q}$ with explanation.

A4. Show that a finite subset of **R** is always closed.

A5. Is $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}$ compact? Justify your answer.

Type B problems (8pts each)

B1. For a set $A \subseteq \mathbf{R}$, show that $x \in \overline{A}$ if and only if there exists a sequence (x_n) such that $x_n \in A$ for all $n \in \mathbf{N}$ and $x_n \to x$. Conclude that A is closed if and only if every convergent sequence in A converges to an element of A.

B2. For a set $A \subseteq \mathbf{R}$, show that $\operatorname{Int} A = \bigcup_{U \subset A, U \text{ open}} U$. Conclude that $\operatorname{Int} A$ is the largest open set contained in A in the sense that if U is open and $U \subseteq A$, then $U \subseteq \operatorname{Int} A$.

B3. For a set $A \subseteq \mathbf{R}$, show that $\overline{A} = \bigcap_{A \subset F, F \text{ closed}} F$. Conclude that \overline{A} is the smallest closed set that contains A in the sense that if F is closed and $A \subseteq F$, then $\overline{A} \subseteq F$.

B4. Show that a set $A \subset \mathbf{R}$ is compact if and only if every sequence in A has a subsequence that converges to an element of A. (Slap Borel's Heine.)

B5. Let $f : \mathbf{R} \to \mathbf{R}$. Show that f is continuous if and only if for every open set $V \subseteq \mathbf{R}$, $f^{-1}(V)$ is an open set.

B6. For a set $A \subseteq \mathbf{R}$, show that $\operatorname{Int}(A^c) = (\overline{A})^c$.

B7. For sets $A, B \subseteq \mathbf{R}$, show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Type C problems (12pts each)

(none)