Mathematical Reasoning — Exam 1	Name:
MAT 312, Fall 2011 — D. Ivanšić	Show all your work!

1. (17pts) Consider the following sentences. If a sentence is a statement, determine whether it is true (and justify your answer). If it is a predicate, find its truth set.

- a) (universal set=**R**) $x^2 5x + 6 = 0$
- b) If an integer is divisible by 4, then it is divisible by 6.
- c) If pigs fly, then the sun sets in the east.
- d) There exists a real number x such that $x^2 7 = 0$.
- e) For every $x \in \mathbf{R}$, if x > 1, then $x^4 > x^2$.
- 2. (8pts) Negate the following statements.
- a) Leia does not answer the questions and she suffers the consequences.
- b) If Luke goes to the Dagobah system, he gets stuck in the swamp or masters the force.

3. (8pts) Use a truth table to prove the equivalence $P \iff Q \equiv (\neg P \lor Q) \land (P \lor \neg Q)$. (Use however many columns you need.)

P	Q				
Т	Т				
Т	F				
F	Т				
F	F				

4. (12pts) Use previously proven logical equivalences to prove the equivalence $P \Longrightarrow (Q \Longrightarrow R) \equiv (P \land Q) \Longrightarrow R$. Do not use a truth table.

5. (4pts) Write the converse and contrapositive of the statement: If x > 0, then $3^x > 1$. Converse:

Contrapositive:

6. (4pts) Use the roster method to write the set $\{x \in \mathbb{Z} \mid x^2 + 4 < 10\}$.

7. (6pts) Use set builder notation to write the set $\{\ldots, -5, -1, 3, 7, 11, \ldots\}$

- 8. (14pts) For each of the following statements, do the following:
- a) Write the statement using symbols.
- b) Write the negation of the statement using symbols.
- c) Write the negation of the statement in English.
- 1) There exist real numbers x and y such that $\sin x + \sin y = 3$.

2) There exists a positive real number y such that for every real number x, if $x^2 + y < 7$, then $x^2 + y^2 > 25$.

9. (12pts) Let **R** be the universal set. The following is a predicate in x:

$$(\exists y \in \mathbf{R})(x^2 - y^2 = 16)$$

- a) If x = 3, is the statement true?
- b) If x = 7, is the statement true?
- c) Find the truth set (the x's) of the above statement. Write it using interval notation.

10. (15pts) An integer n is called a type-0, type-1 or type-2 integer if it can be written in the form n = 3k, n = 3k + 1 or n = 3k + 2, respectively, for some integer k. Prove that if m is a type-1 integer and n is a type-2 integer, then $m^2 + mn + n^2$ is a type-1 integer. Start with a know-show table if you find it helpful.

Bonus. (10pts) Determine whether the statements 1 and 2 in problem 8 are true and justify.