College Algebra — Joysheet 9 MAT 140, Fall 2015 — D. Ivanšić

me: Saul Ocean

Covers: 3.3, 3.4, 3.5 Show all your work!

1. (4pts) Solve the equation.

$$|7x-2| = 30$$
 $7x-2=30$ or $7x-2=-30$
 $7x=32$ or $7x=-28$
 $x=\frac{3}{7}$ or $x=-4$

2. (12pts) Solve the inequalities. Draw your solution and write it in interval form.

$$|x+3| \ge 4$$

 $|x-(-3)| \ge 4$
distance from $x \text{ to } -3 \ge 4$
 $|x-4| + 4$
 $|x-4|$

Solve the equations:

3.
$$(8pts) \frac{x}{x+1} + \frac{10}{x+3} = \frac{2x^2 + 9x - 11}{x^2 + 4x + 3} | (x+1)(x+1) | 4. (8pts) \sqrt{x+45} - x = 3$$

$$(x+1)(x+1) = \frac{x}{x+1} | (x+1)(x+1) = \frac{2x^3 + 9x - 11}{(x+1)(x+3)} | (x+1)(x+3) | x + 45 = x^3 + 6x + 9$$

$$x(x+3) + |0(x+1) = 2x^3 + 9x - 11 | x^3 + 5x - 36 = 0$$

$$x^3 + 3x + |0x + |0| = 2x^3 + 9x - 11 | (x+9)(x-4) = 0$$

$$x^3 + |3x + |0| = 2x^3 + 9x - 11 | x = -9, 4 | x = 4 | s = 6$$

$$x^3 + |3x + |0| = 2x^3 + 9x - 11 | x = -9, 4 | x = 4 | s = 6$$

$$x^3 + |3x + |0| = 2x^3 + 9x - 11 | x = -9, 4 | x = 4 | s = 6$$

$$x^3 + |3x + |0| = 2x^3 + 9x - 11 | x = -9, 4 | x = 4 | s = 6$$

$$x^3 + |3x + |0| = 2x^3 + 9x - 11 | x = -9, 4 | x = 4 | s = 6$$

$$x^3 + |3x + |0| = 2x^3 + 9x - 11 | x = -9, 4 | x = 4 | s = 6$$

$$x^3 + |3x + |3x$$

- (14pts) A ball is thrown upwards from the ground with initial velocity 32 meters per second. Its height in meters after t seconds is given by $s(t) = -5t^2 + 32t$.
- a) Sketch the graph of the height function.
- b) When does the ball reach its greatest height, and what is that height?
- c) When is the ball at height 44 meters?

$$-5t^{2}+32t=0$$

$$t(-5t+32)=0$$

$$t=0, \frac{3^{2}}{5}=6.4$$

A) Greatest height at when

$$t = -\frac{32}{2a} = -\frac{32}{2 \cdot (-s)} = \frac{32}{10} = 3.2$$

height = $-5.3.2^2 + 32.3.2 = 51.2$ metes

() $-5+^2+32+=44$
 $-5+^2+32+-44=0$
 $32 \pm \sqrt{1024-880} = 32 \pm \sqrt{144}$
 $5+^2-32+44=0$

After 2 accords (507.46) and 4.4 seconds (60.74) a simple rectangular building with two rooms and a 10 -ft.

- 6. (14pts) You are building a simple rectangular building with two rooms and a 10-ft opening between them and have enough money to build 300 feet of walls (see picture). Your goal is to maximize the enclosed area.
- a) Express the area of the building as a function of one of the sides of the rectangle. What is the domain of this function?
- (no need for the graphing calculator — you should already know what the graph looks like). What are the dimensions of the building that has the greatest area and what is the greatest area possible?

$$3x - 10 + 2y = 300$$

$$3x + 2y = 310$$

$$2y = 310 - 3x$$

$$5 = 155 - \frac{2}{5}x$$

$$A = xy = x \left(155 - \frac{2}{5}x\right)$$

$$= -\frac{2}{5}x^2 + 155x$$

