College Algebra w.B.A.— Exam 1 MAT 120, Spring 2014 — D. Ivanšić

Name: Soul Ocean

Factor the expressions:

1. (3pts)
$$4x^2 - 25y^2 = (2x)^2 - (5y)^2 = (2x - 5y)(2x + 5y)$$

2. (5pts)
$$12x^2 + 4x - 5 = 12x^2 + 10x - 6x - 5 = 2x(6x + 5) - (6x + 5)$$

 $p_{100}d = -60 \quad 10_1 - 6$
 $s_{100} = 4$

3. (5pts)
$$9u^2 - 24uv + 16v^2 = (3u)^2 - 2 \cdot 3u \cdot 4v + (4v)^2 = (3u - 4v)^2$$

Simplify, showing intermediate steps.

4. (3pts)
$$\sqrt{48} + \sqrt{12} = \sqrt{16 \cdot 3} + \sqrt{4 \cdot 3}$$

 $= 4\sqrt{3} + 2\sqrt{3} = 6\sqrt{3}$

5. (2pts)
$$\sqrt[3]{72} = \sqrt[3]{9} = 2\sqrt[3]{9}$$

(8pts) Simplify.

6. (8pts) Simplify.
$$\frac{2x+3}{x^{2}+x-6} - \frac{5}{x^{2}+6x+9} = \frac{(2x+3)(x+3)-5(x-2)}{(x-2)(x+3)(x+3)} = \frac{2x^{2}+9x+9-5x+10}{(x-2)(x+3)(x+3)}$$

$$= \frac{2x^{2}+4x+19}{(x-2)(x+3)^{2}} = \frac{2x^{2}+9x+9-5x+10}{(x-2)(x+3)(x+3)}$$

$$= \frac{2x^{2}+9x+9-5x+10}{(x-2)(x+3)(x+3)}$$

(8pts) Simplify. Express answers first in terms of positive exponents. $\frac{\left(125x^{6}y^{-\frac{1}{2}}\right)^{\frac{1}{3}}}{\left(10x^{3}y^{\frac{3}{4}}\right)^{2}} = \frac{\left[25^{\frac{1}{3}}\left(\chi^{6}\right)^{\frac{1}{3}}\left(\zeta^{\frac{1}{3}}\right)^{\frac{1}{3}}\right]}{\left[0^{2}\left(\chi^{3}\right)^{2}\left(\zeta^{\frac{3}{4}}\right)^{2}\right]} = \frac{5\times\frac{2}{5}}{\left[60\times\frac{6}{5}\sqrt{\frac{3}{4}}\right]} = \frac{1}{20\times\frac{4}{5}\sqrt{\frac{5}{3}}}$ 8. (5pts) Rationalize the denominator.

8. (spts) Rationalize the denominator:
$$\frac{3\sqrt{5}-2}{3+\sqrt{5}} \cdot \frac{3-\sqrt{5}}{3-\sqrt{5}} = \frac{9\sqrt{5}-6-3\cdot 5+2\sqrt{5}}{3^2-\sqrt{5}^2} = \frac{\lceil |\sqrt{5}-2||}{9-5} = \frac{7\sqrt{5}-2|}{4}$$

Solve the equations.

9. (3pts)
$$3(x-5)+2=5(x+4)$$

 $3x-15+2=5x+20$
 $3x-13=5x+20$ [-)x-20
 $-33=2x$
 $x=-\frac{33}{2}$

10. (5pts)
$$a+b+abc = ab+ac$$
 (solve for b)
$$b+ab-c-ab=ac-a$$

$$(1+ac-a)b=ac-a$$

$$b=\frac{ac-a}{1+ac-a}$$

11. (5pts)
$$|x-3| = |2x+1|$$

 $x-3 = 2x+1$ or $x-3 = -(2x+1)$
 $-4 = x$ or $x-3 = -2x-1$
 $3x = 2$
 $x = \frac{2}{3}$
 $x = -4$ or $x = \frac{2}{3}$

12. (6pts)
$$x^{2} + 20x + 7 = 5x - x^{2}$$
 $\begin{vmatrix} + x^{2} - 5x \end{vmatrix}$
 $2x^{2} + |5x| + 7 = 0$

$$x = -\frac{15 \pm \sqrt{15^{2} - 4 \cdot 2 \cdot 7}}{2 \cdot 2}$$

$$= -\frac{15 \pm \sqrt{169}}{4} = -\frac{15 \pm 13}{4} = -7, -\frac{1}{2}$$

$$x = -7, -\frac{1}{2}$$

- 13. (14pts) A company makes large pots for plants. Its cost to make x thousand pots, $0 \le x \le 30$, is $0.25x^2 + 11x + 34$ (also in thousands). Suppose the company can sell the pots for \$23 a piece.
- a) Find the expressions for revenue and profit (in thousands) when selling x thousand axes.
- b) Find the profit when 23,800 pots are produced.
- c) How many pots are produced in order to make a profit of \$75,000?

a)
$$R = 23 \times$$

 $P = R - C = 23 \times - (0.25 \times^{2} + 11 \times +34)$
 $P = -0.25 \times^{2} + 12 \times -34$

L)
$$x = 27.8$$

 $P = -0.25 \cdot 23.8 + 12 \cdot 23.8 - 34$
 $= 109.99$
 $P = 109,990$

()
$$P = 75$$

1) $75 = -0.25 \times^{2} + 12 \times -34$
 $-0.25 \times^{2} + 12 \times -109 = 0$ $1 \cdot (-1)$
 $0.25 \times^{2} - 12 \times +109 = 0$
 $X = \frac{-(-12) \pm \sqrt{(-12)^{2} - 4 \cdot 0.25 \cdot 109}}{2 \cdot 0.25}$
 $= \frac{12 \pm \sqrt{35}}{0.5} = 35.832160 \leftarrow (0.30)$
 12.168 pts produced for given profit

14. (14pts) You have 8% and 15% solutions of muriatic acid. How many liters of each solution is needed to get 10 liters of an 11% solution of muriatic acid? Write the meaning of your variable.

15. (14pts) A plot of land is 20 meters long and 7 meters wide. If we increase the width and decrease the length by the same amount we get a plot of area 180m². Find this amount. Write the meaning of your variable.

$$x = a_{max} + d_{max} +$$

Bonus (10pts) Joe's tractor can travel 10mph faster than Jake's. Starting at the same time, Joe completed an entire journey when Jake completed $\frac{2}{3}$ of this same journey. What are the speeds of Joe's and Jake's tractors? Write the meaning of your variable.

Jake

$$r = Jake's speed$$

Jake

 $Jake = Jake's speed$
 $Jake = Jake = Jake's speed = Zo ugh = $\frac{2}{3}(r+10)=r$
 $Jake's speed = Zo ugh = $\frac{2}{3}(r+10)=r$
 $Jake's speed = Zo ugh = Jake's speed = Zo ugh = $\frac{2}{3}r+\frac{20}{3}=r-\frac{2}{3}r$
 $Jake's speed = Zo ugh = Jake's speed = Zo ugh = $\frac{2}{3}r+\frac{20}{3}=r-\frac{2}{3}r$$$$$