Advanced Calculus 1 — Handout MAT 525/625 Fall 2014 — D. Ivanšić

Test Knowledge

Sections 1.1, 1.2, 1.3, 2.1–2.4

Definitions Injective, surjective, bijective function (1.1.9)

Finite and infinite sets (1.3.1)

Denumerable and countable sets (1.3.6)

 ϵ -neighborhood of a (2.2.7)

Set bounded above/below, bounded, unbounded (2.3.1)

Supremum and infimum of a set (2.3.2)

Theorems Well-ordering property of N (1.2.1)

and Principle of mathematical induction (1.2.2)

Axioms Theorems 1.3.5, 1.3.9, 1.3.10

Theorems 1.3.8, 1.3.11, 1.3.12 Cantor's Theorem (1.3.13)Algebraic properties of \mathbf{R} (2.1.1)

Order properties of \mathbf{R} (2.1.5) Theorem 2.1.7

Theorem 2.1.9

Triangle inequality & Corollary (2.2.3, 2.2.4)

Completeness Property of \mathbf{R} (2.3.6)

Lemmas 2.3.3 and 2.3.4 Archimedean Property (2.4.3)

Density of \mathbf{Q} and irrationals (2.4.8, 2.4.9)

Proofs Nonexistence of rational number r so that $r^2 = 2$ (2.1.4)

Theorem 2.1.9

Existence of $\sqrt{2}$ (2.4.7)

Archimedean Property (2.4.3)

Density of \mathbf{Q} (2.4.8)

Advanced Calculus 1 — Handout MAT 525/625 Fall 2014 — D. Ivanšić

Test Knowledge

Sections 3.1–3.6

Definitions Sequence (3.1.1)

Limit of a sequence (3.1.3) m-tail of a sequence (3.1.8) Bounded sequence (3.2.1) Monotone sequence (3.3.1) Euler's number e (3.3.6)

Subsequence of a sequence (3.4.1)

Cauchy sequence (3.5.1) Contractive sequence (3.5.7)

Sequences tending to ∞ or $-\infty$ (3.6.1)

Theorems Theorem 3.1.10

Theorem 3.2.2

Limit Theorems (3.2.3)

Theorem 3.2.5

Squeeze Theorem (3.2.7)

Theorem 3.2.11

Monotone Convergence Theorem (3.3.2)

Theorem 3.4.2

Monotone Subsequence Theorem (3.4.7) Bolzano-Weierstrass Theorem (3.4.8) Cauchy Convergence Criterion (3.5.5)

Theorem 3.5.8, Corollary 3.5.10

Theorems 3.6.4, 3.6.5

Extended Limit Theorems (involving ∞)

Proofs Theorem 3.2.2

Limit Theorems (3.2.3)

Monotone Convergence Theorem (3.3.2)

Example 3.3.5

Bolzano-Weierstrass Theorem (3.4.8) Cauchy Convergence Criterion (3.5.5)

Theorem 3.5.8, Corollary 3.5.10

Advanced Calculus 1 — Handout MAT 525/625 Fall 2014 — D. Ivanšić

Test Knowledge

Sections 4.1–4.3

Definitions Cluster point (4.1.1)

Limit of a function (4.1.4)

Boundedness on a neighborhood (4.2.1)

One-sided limits (4.3.1) Infinite limit (4.3.5) Limit at infinity (4.3.10)

Infinite limit at infinity (4.3.13)

Theorems Theorem 4.1.2

Theorem 4.1.6

Sequential criteria for limits (4.1.8, 4.1.9)

Limit Theorems (4.2.4)Squeeze Theorem (4.2.7)

Theorem 4.3.3

Comparison Theorem 4.3.7

Sequential criteron for limits (4.3.11, 4.3.14)Extended Limit Theorems (involving ∞)

Limit test Theorem 4.3.15

Proofs Theorem 4.1.2

Sequential criterion (4.1.8)

Limit Theorems by definition (4.2.4)

Limit test Theorem 4.3.15