Advanced Calculus 1 - Exam 1 MAT 525/625, Fall 2014 - D. Ivanšić

Name:
Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type $B$ or $C$ (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define the $\epsilon$-neighborhood of $a$.
Theory 2. (3pts) Define the supremum of a set.
Theory 3. (3pts) If $S$ and $T$ are sets and $T \subseteq S$, state the theorem (2 claims) that relates countability of $S$ to countability of $T$.

## Type A problems (5pts Each)

A1. Show using Mathematical Induction that $5^{n}-4 n-1$ is divisible by 16 for all $n \in \mathbf{N}$.
A2. Let $A$ be countable and $B$ uncountable. Prove that $A \cup B$ is uncountable and $A \cap B$ is countable.

A3. If $a \in \mathbf{R}$, use algebraic properties of $\mathbf{R}$ to show that $-(-a)=a$, and $1 /(-a)=-(1 / a)$ (assuming $a \neq 0$ ).

A4. Show that $x+\frac{1}{x} \geq 2$ for all $x>0$ and that equality holds if and only if $x=1$.
A5. If they exist, find a lower bound of $S$, an upper bound of $S, \inf S$ and $\sup S$. There is $\begin{array}{lll}\text { no need to justify. } & \text { a) } S=(-1,4] & \text { b) } S=\left\{\left.\frac{1}{\sqrt{n}} \right\rvert\, n \in \mathbf{N}\right\}\end{array}$

Type B problems (8pts Each)

B1. Let $A$ be a denumerable collection of lines in the plane. Show that the set of all points that are intersections of any two of those lines is countable.

B2. Let $a \in \mathbf{N}$ be an even number that is not divisible by 4. Show that $\sqrt{a}$ is not a rational number.

B3. Determine and sketch the set of points in the plane satisfying $2|x|+|y| \leq 3$.
B4. Let $S=(1, \infty)$. If they exist, find a lower bound of $S$, an upper bound of $S$, $\inf S$ and $\sup S$. Prove the details, including nonexistence of any of the quantities.

B5. Let $S$ be a nonempty set that is bounded above. Show that $\sup e^{S}=e^{\sup S}$. (As expected, $e^{S}=\left\{e^{s} \mid s \in S\right\}$.)

## Type C problems (12PTS EACH)

C1. Let $S=\left\{x \in \mathbf{R} \mid x^{2}+b x+c=0\right.$ for some $\left.b, c \in \mathbf{Z}\right\}$. That is, $S$ is the set of all solutions of quadratic equations $x^{2}+b x+c=0$ with coefficients $b, c \in \mathbf{Z}$. Show that $S$ is countable.
$\mathbf{C 2}$. Show that the set of all functions $\mathbf{N} \rightarrow\{0,1\}$ is uncountable. Hint: any function $a: \mathbf{N} \rightarrow\{0,1\}$ may be thought of as a sequence of 0 's and 1 's.

C3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a strictly increasing function, and $S$ a nonempty set that is bounded above. Although $\sup f(S)=f(\sup S)$ is true for reasonable functions $f$, find a function $f$ - obviously, unreasonable - for which this is false.

Advanced Calculus 1 - Exam 1 make-up MAT 525/625, Fall 2014 - D. Ivanšić

Name: Show all your work!

Do all the theory problems. Then do five problems, at least one of which is of type $B$ or $C$ (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a set $S$ is denumerable.
Theory 2. (3pts) Define when a set is bounded above and when it is bounded below.
Theory 3. (3pts) State the theorem on the density of $\mathbf{Q}$.

## Type A problems (5pts Each)

A1. Show using Mathematical Induction that $5^{n}+12 n-1$ is divisible by 16 for all $n \in \mathbf{N}$.
A2. Let $S$ be the collection of all lines in $\mathbf{R}^{2}$ whose $x$ - and $y$-intercepts are natural numbers. Show that $S$ is countable.

A3. If $a, b \in \mathbf{R}$, use algebraic properties of $\mathbf{R}$ to show that $-(a+b)=(-a)+(-b)$, and $1 /(a b)=(1 / a)(1 / b)$ (assuming $a, b \neq 0)$.

A4. Show that $x+\frac{1}{x} \geq 2$ for all $x>0$ and that equality holds if and only if $x=1$.
A5. If they exist, find a lower bound of $S$, an upper bound of $S, \inf S$ and $\sup S$. There is no need to justify.
a) $S=(-3, \infty)$
b) $S=\left\{\left.1+\frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$

## Type B problems (8pts Each)

B1. Let $A$ be countable and $B$ uncountable. Prove that $A \backslash B$ is countable and $B \backslash A$ is uncountable.

B2. Let $a \in \mathbf{N}$ be an even number that is not divisible by 4. Show that $\sqrt{a}$ is not a rational number.

B3. Determine and sketch the set of points in the plane satisfying $|y|-2|x| \leq 3$.
B4. Let $S=\left\{\left.m+\frac{1}{n} \right\rvert\, m, n \in \mathbf{N}\right\}$. If they exist, find a lower bound of $S$, an upper bound of $S, \inf S$ and $\sup S$. Prove the details, including nonexistence of any of the quantities.

B5. Let $S$ be a nonempty set that is bounded above. Show that $\sup S^{3}=(\sup S)^{3}$. (As expected, $S^{3}=\left\{s^{3} \mid s \in S\right\}$.)

## Type C problems (12PTS EACH)

C1. Let $S=\left\{x \in \mathbf{R} \mid x^{2}+b x+c=0\right.$ for some $\left.b, c \in \mathbf{Z}\right\}$. That is, $S$ is the set of all solutions of quadratic equations $x^{2}+b x+c=0$ with coefficients $b, c \in \mathbf{Z}$. Show that $S$ is countable.
$\mathbf{C 2}$. Show that the set of all functions $\mathbf{N} \rightarrow\{0,1\}$ is uncountable. Hint: any function $a: \mathbf{N} \rightarrow\{0,1\}$ may be thought of as a sequence of 0 's and 1 's.

C3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a strictly increasing function, and $S$ a nonempty set that is bounded above. Although $\sup f(S)=f(\sup S)$ is true for reasonable functions $f$, find a function $f$ - obviously, unreasonable - for which this is false.

Do all the theory problems. Then do five problems, at least one of which is of type $B$ or $C$ (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define a subsequence of a sequence.
Theory 2. (3pts) Define when a sequence tends to $\infty$.
Theory 3. (3pts) State the Monotone Convergence Theorem.

Type A problems (5pts Each)

A1. Use the definition of the limit to show $\lim \frac{2 n+3}{n-7}=2$.
A2. Find $\lim \sqrt[2 n]{7 n^{3}}$.
A3. If $0<a<b$, find $\lim \left(a^{n}+b^{n}\right)^{\frac{1}{n}}$.
A4. Establish convergence or divergence of $x_{n}=\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\cdots+\frac{1}{\sqrt{2 n}}$.
A5. If $\lim x_{n}=\infty$ and $\lim y_{n}=\infty$, prove using the definition that $\lim \left(x_{n}+y_{n}\right)=\infty$.
A6. Show $\lim \left(1+\frac{1}{n}\right)^{n^{2}}=\infty$. Make sure you use only arguments we established.

## Type B problems (8pts Each)

B1. Use the squeeze theorem to determine $\lim \sqrt[n]{n^{2}-3 n+1}$.
B2. Let the sequence $x_{n}$ be recursively given by: $x_{1}=1, x_{n+1}=\sqrt{7+2 x_{n}}$. Show that this sequence converges and find its limit.

B3. Find $\lim \left(1+\frac{1}{n^{2}}\right)^{n}$ and justify your reasoning. While this problem may be done fairly easily with "calculus 1 " techniques, make sure you use only arguments we established (ask if unsure).

B4. Show that if a sequence $\left(x_{n}\right)$ is unbounded, then there exists a subsequence $\left(x_{n_{k}}\right)$ such that $\lim \frac{1}{x_{n_{k}}}=0$.

B5. Use the definition to show that the sequence $x_{n}=\frac{n^{2}}{n^{2}+1}$ is Cauchy.
B6. Let the sequence $x_{n}$ be recursively given by: $\left|x_{1}\right| \leq 1, x_{n+1}=\frac{1}{5}\left(x_{n}^{3}+x_{n}-1\right)$. Show that this sequence is contractive and write the equation that its limit satisfies (do not solve the equation, since it is not easy).

## Type C problems (12pts Each)

$\mathbf{C 1}$. Let the sequence $x_{n}$ be recursively given by: $x_{1}>0, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{5}{x_{n}}\right)$.
a) Show for any $a>0: \frac{1}{2}\left(a+\frac{5}{a}\right) \geq \sqrt{5}$.
b) Show that $x_{n}$ is a contractive sequence (part a) will help).
c) Find $\lim x_{n}$ if it exists.

C2. Inspired by a student question, this problem is a negative version of the homework problem: if the even terms and the odd terms of a sequence converge to the same limit, then the sequence converges to this limit. We give an example of a sequence $\left(x_{n}\right)$ that can be broken up into infinitely many "disjoint" subsequences, all of which converge to the same limit, but $\left(x_{n}\right)$ itself diverges.

For every prime $p$ build the set $A_{p} \subseteq \mathbf{N}$ inductively as follows:

$$
\begin{aligned}
& A_{2}=\{2,4,6, \ldots\}, \text { all multiples of } 2 . \\
& A_{3}=\{3,6,9, \ldots\} \backslash A_{2}, \\
& A_{5}=\{5,10,15, \ldots\} \backslash\left(A_{2} \cup A_{3}\right), \text { and so on: if } p \text { is the first prime after } q, \text { then } \\
& A_{p}=\{p, 2 p, 3 p, \ldots\} \backslash\left(A_{2} \cup A_{3} \cup \cdots \cup A_{q}\right) .
\end{aligned}
$$

a) Show that $A_{p}$ is infinite.
b) Show that $A_{p} \cap A_{q}=\emptyset$ if $p \neq q$ and $\mathbf{N}=A_{2} \cup A_{3} \cup A_{5} \cup \ldots$

Define the sequence: $x_{n}= \begin{cases}1, & \text { if } n \text { is prime } \\ 0, & \text { if } n \text { is not prime. }\end{cases}$
Now suppose the infinitely many elements of $A_{p}$ are labeled in increasing order as $A_{p}=$ $\left\{n_{p 1}, n_{p 2}, \ldots, n_{p k}, \ldots\right\}$. For every prime $p$, consider the subsequence $X_{p}$ of $\left(x_{n}\right)$ whose $k$-th term is $x_{n_{p k}}$ (we may write this as $X_{p k}=x_{n_{p k}}$ ).
c) Show that $x_{n}$ diverges.
d) Show that all the sequences $X_{p}$ converge to the same limit.

Do all the theory problems. Then do five problems, at least one of which is of type $B$ or $C$ (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define a cluster point of a set $A \subseteq \mathbf{R}$.
Theory 2. (3pts) Define what $\lim _{x \rightarrow \infty} f(x)=\infty$ means.
Theory 3. (3pts) State sequential criterion for convergence for the case $\lim _{x \rightarrow c} f(x)=L$.

## Type A problems (8pts Each)

A1. Find the limits, if they exist (just a computation is expected):
a) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
b) $\lim _{x \rightarrow \infty} \frac{x^{2}-7 x+12}{2 x^{2}+5 x+4}$.

A2. Does $\lim _{x \rightarrow 0} x \sin ^{2}\left(\frac{1}{x}\right)$ exist? If yes, find it, if not, justify.
A3. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function given by: $f(x)=x$, if $x$ is rational, $f(x)=x^{2}$ if $x$ is irrational. find $\lim _{x \rightarrow 0} f(x)$ if it exists.

A4. Prove the limit theorem by definition: if $\lim _{x \rightarrow-\infty} f(x)=L$ and $\lim _{x \rightarrow-\infty} g(x)=M$, then $\lim _{x \rightarrow-\infty}(f(x)+g(x))=L+M$.

A5. Use the definition to show that $\lim _{x \rightarrow \infty} \frac{2 x-4}{5 x+2}=\frac{2}{5}$.

## Type B problems (8pts Each)

B1. Use the definition to show that $\lim _{x \rightarrow c}\left(x^{3}+2 x-7\right)=c^{3}+2 c-7$ for any $c \in \mathbf{R}$.
B2. Prove the extended limit law $L \cdot \infty=\infty$, where $L>0$, that is, if $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=\infty$, show that $\lim _{x \rightarrow c}(f(x) g(x))=\infty$.

B3. Suppose $\lim _{x \rightarrow 0+} x f(x)=L, L>0$. Show that $\lim _{x \rightarrow 0+} f(x)=\infty$.
B4. Suppose $A \subseteq \mathbf{R}$ is a bounded set. If $\sup A \notin A$, show $\sup A$ is a cluster point of $A$. What can you say if $\sup A \in A$ ?

B5. Suppose $\lim _{x \rightarrow \infty} f(x)=\infty$ and that $g(x)$ is bounded on some interval $(a, \infty)$. Show that $\lim _{x \rightarrow \infty}(f(x)-g(x))=\infty$.

C1. Suppose $f, g: \mathbf{R} \rightarrow \mathbf{R}$, and $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow L} g(x)=M$. Contrary to what one may think, $\lim _{x \rightarrow c} g(f(x))=M$ is not always true. Give an example where it is not. (This one is subtle and hinges on the possibility that $g(L) \neq M$.)

Advanced Calculus 1 - Final Exam MAT 525/625, Fall 2014 - D. Ivanšić

Name: Show all your work!

Do all the theory problems. Then do at least five problems, at least two of which are of type $B$ or $C$. If you do more than five, best five will be counted.

Theory 1. (3pts) Define the supremum of a set.
Theory 2. (3pts) Define what $\lim _{x \rightarrow \infty} f(x)=L$ means.
Theory 3. (3pts) State the Bolzano-Weierstrass theorem for sequences.

## Type A problems (5pts Each)

A1. If they exist, find a lower bound of $S$, an upper bound of $S, \inf S$ and $\sup S$. There is no need to justify. $\quad$ a) $S=\mathbf{Q} \cap[\sqrt{5}, 7) \quad$ b) $S=\left\{\left.\frac{(-1)^{n}}{n}+\frac{(-1)^{m}}{m} \right\rvert\, n, m \in \mathbf{N}\right\}$
A2. Use the definition of the limit to show $\lim \frac{2 n-4}{5 n+2}=\frac{2}{5}$.
A3. Establish convergence or divergence of $x_{n}=\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\cdots+\frac{1}{\sqrt{2 n}}$.
A4. Find the limits, if they exist (just a computation is expected):
a) $\lim _{x \rightarrow \infty} \frac{x-4}{\sqrt{x}-7}$
b) $\lim _{x \rightarrow 0+} \frac{\sqrt{5 x+1}-1}{x^{2}}$.

A5. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function given by: $f(x)=x$, if $x$ is rational, $f(x)=x^{2}$ if $x$ is irrational. Find $\lim _{x \rightarrow 0} f(x)$ if it exists.

A6. Prove the extended limit law $\infty \cdot \infty=\infty$, where $L>0$, that is, if $\lim _{x \rightarrow c} f(x)=\infty$ and $\lim _{x \rightarrow c} g(x)=\infty$, show that $\lim _{x \rightarrow c}(f(x) g(x))=\infty$.

## Type B problems (8pts Each)

B1. Let $A$ be countable and $B$ uncountable. Prove that $A \backslash B$ is countable and $B \backslash A$ is uncountable.

B2. Let $S$ be a nonempty set that is bounded above. Show that $\sup S^{3}=(\sup S)^{3}$. (As expected, $S^{3}=\left\{s^{3} \mid s \in S\right\}$.)

B3. Let the sequence $x_{n}$ be recursively given by: $x_{1}=2, x_{n+1}=5-\frac{2}{x_{n}}$. Show that this sequence converges and find its limit.
B4. Use the definition to show that the sequence $x_{n}=\frac{n^{2}}{n^{2}+1}$ is Cauchy.
B5. Find $\lim \left(1+\frac{1}{n^{2}}\right)^{n}$ and justify your reasoning. While this problem may be done fairly easily with "calculus 1 " techniques, make sure you use only arguments we established (ask if unsure).

B6. Use the definition to show that $\lim _{x \rightarrow c}\left(x^{3}+3 x^{2}-5 x+1\right)=c^{3}+3 c^{2}-5 c+1$ for any $c \in \mathbf{R}$.

B7. Suppose $A \subseteq \mathbf{R}$ is a bounded set. If $\sup A \notin A$, show $\sup A$ is a cluster point of $A$. What can you say if $\sup A \in A$ ?

## Type C problems (12PTS Each)

$\mathbf{C 1}$. Show that the set of all functions $\mathbf{N} \rightarrow\{0,1\}$ is uncountable. Hint: any function $a: \mathbf{N} \rightarrow\{0,1\}$ may be thought of as a sequence of 0 's and 1 's.
$\mathbf{C 2}$. Let the sequence $x_{n}$ be recursively given by: $x_{1}>0, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{5}{x_{n}}\right)$.
a) Show for any $a>0: \frac{1}{2}\left(a+\frac{5}{a}\right) \geq \sqrt{5}$.
b) Show that $x_{n}$ is a contractive sequence (part a) will help).
c) Find $\lim x_{n}$ if it exists.

