Fall 2009: MAT 525, Exam 1

Do all the theory problems. Then do at least five problems, one of which is of a different type than others (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define the ϵ-neighborhood of a point $a \in \mathbf{R}$.
Theory 2. (3pts) Define when a set is bounded above and when it is bounded below.
Theory 3. (3pts) State the Completeness Property of \mathbf{R}.
Type A problems (5pts each)
A1. Let $f: A \rightarrow B$, and let $G, H \subseteq B$. Show that $f^{-1}(G \cap H)=f^{-1}(G) \cap f^{-1}(H)$.
A2. If $a, b \in \mathbf{R}$, use algebraic properties of \mathbf{R} to show that $(-1) a=-a$, and $1 /(a b)=$ $(1 / a)(1 / b)$ (assuming $a, b \neq 0)$.
A3. Show that $\left(\frac{a+b}{2}\right)^{2} \leq \frac{a^{2}+b^{2}}{2}$ for all $a, b \in \mathbf{R}$, and that equality holds if and only if $a=b$.
A4. Prove: if $a \in \mathbf{R}$ is such that $a<\epsilon$ for every $\epsilon>0$, then $a \leq 0$.
A5. Find an upper and a lower bound of $S=(-2,5]$. Justify if one or both do not exist. Then find $\inf S$ and $\sup S$ and justify.

Type B problems (8pts Each)

B1. Show using Mathematical Induction that $n^{3}+5 n$ is divisible by 6 for all $n \in \mathbf{N}$.
B2. Let $a \geq 0$ and $b \geq 0$. Show that $a<b$ if and only if $a^{2}<b^{2}$.
B3. Determine and sketch the set of points in the plane satisfying $|x|-|y| \geq 2$.
B4. Find an upper and a lower bound of $S=\{\sqrt{n} \mid n \in \mathbf{N}\}$. Justify if one or both do not exist. Then find $\inf S$ and $\sup S$ and justify.

B5. Let $S \subset(0, \infty)$ be a nonempty set that is bounded above. Show that $\inf \frac{1}{S}=\frac{1}{\sup S}$. (As expected, $\frac{1}{S}=\left\{\left.\frac{1}{s} \right\rvert\, s \in S\right\}$.)

Type C problems (12pts Each)

$\mathbf{C 1}$. Show that for every $a \in \mathbf{R}, a \geq 0$, there exists a number so that $x^{2}=a$.
C2. Suppose a set satisfies all the algebraic and order properties of \mathbf{R}. Show that it cannot satisfy the following "well-ordering" property: every nonempty set S bounded below has a least element. (Postulates existence of a minimal element, rather than an infimum.) Hint: find a set S that violates the property. Justification needs to be based on properties of \mathbf{R} rather than intuition.

Fall 2009: MAT 525, Exam 2

Do all the theory problems. Then do at least five problems, one of which is of a different type than others (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define the limit of a sequence.
Theory 2. (3pts) Define a Cauchy sequence.
Theory 3. (3pts) State the Bolzano-Weierstrass theorem for sequences.

Type A problems (5pts Each)

A6. If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences such that $\lim x_{n}=0$ and $\left(y_{n}\right)$ is bounded, show that $\lim x_{n} y_{n}=0$.
A7. Use the squeeze theorem to determine $\lim (n!)^{\frac{1}{n^{2}}}$.
A8. Find $\lim \left(1+\frac{1}{3 n}\right)^{9 n}$ and justify your reasoning.
A9. Give an example of a sequence whose every convergent subsequence converges to 12 , yet the sequence itself does not converge.

A10. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences such that $\lim x_{n}=\infty$ and $x_{n} \leq y_{n}$ for all $n \in \mathbf{N}$. Use the definition to prove that $\lim y_{n}=\infty$.

Type B problems (8pts Each)

B6. If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are convergent sequences, show that $\lim \left(x_{n}+y_{n}\right)=\lim x_{n}+\lim y_{n}$.
B7. Using the definition, prove the extended limit law $L \cdot \infty=\infty$, if $L>0$. That is, if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are sequences such that $\lim x_{n}=L, L>0$, and $\lim y_{n}=\infty$, then $\lim x_{n} y_{n}=\infty$.

B8. State and prove the Monotone Convergence Theorem.
B9. Let $\left(x_{n}\right)$ be given inductively by $x_{n+1}=\sqrt{3+2 x_{n}}$, with $x_{1}>0$. Show that $\left(x_{n}\right)$ converges and find the limit.
B10. Let $x_{n}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{3}}+\cdots+\frac{1}{n \cdot 2^{n}}$. Show that $\left(x_{n}\right)$ is a Cauchy sequence.
B11. Let $\left(x_{n}\right)$ be given inductively by $x_{n+1}=\frac{1}{7}\left(1-x_{n}^{2}\right)$, with $\left|x_{1}\right| \leq 3$. Show that $\left(x_{n}\right)$ converges and find the limit. (Hint: contractive sequence.)

Type C problems (12pts Each)
C3. If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are convergent sequences, show that $\lim \left(x_{n} y_{n}\right)=\lim x_{n} \cdot \lim y_{n}$.
C4. Let $x_{n}=\frac{1}{2}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\cdots+\frac{n}{2^{n}}$. Show that $\left(x_{n}\right)$ is convergent.
C5. Determine $\lim \sqrt[n]{n!}$.

Fall 2009: MAT 525, Exam 3

Do all the theory problems. Then do at least five problems, one of which is of a different type than others (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define what $\lim _{x \rightarrow c} f(x)=L$ means.
Theory 2. (3pts) Define a cluster point of a subset $A \subset \mathbf{R}$.
Theory 3. (3pts) State the Intermediate Value Theorem.

Type A problems (5pts each)

A11. Find the limits, if they exist: a) $\lim _{x \rightarrow 5} \frac{\sqrt{5}-\sqrt{x}}{x-5} \quad$ b) $\lim _{x \rightarrow 3} \frac{x^{2}-7 x+12}{x-3}$.
A12. Use the definition to show that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$.
A13. Does $\lim _{x \rightarrow 0} \cos ^{2} \frac{1}{x}$ exist? If yes, find it, if not, justify.
A14. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be functions such that f is continuous at c and g is continuous at $b=f(c)$. Show that $g \circ f$ is then continuous at c.

A15. Let $f:[a, b] \rightarrow \mathbf{R}$ be a function such that $f(x)<0$ for all $x \in[a, b]$. Show there exists a number $w<0$ such that $f(x) \leq w$ for all $x \in[a, b]$. Give an example of a function $f:(a, b) \rightarrow \mathbf{R}$ for which the conclusion does not hold.

Type B problems (8pts Each)

B12. Use the definition to show that $\lim _{x \rightarrow c}\left(x^{2}+4 x+7\right)=c^{2}+4 c+7$ for any $c \in \mathbf{R}$.
B13. Show that $\lim _{x \rightarrow \infty}\left(x^{2}+x \sin x\right)=\infty$.
B14. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the function given by: $f(x)=x$, if x is rational, $f(x)=-x$ if x is irrational. Prove f is continuous at 0 and discontinuous at every other point.

B15. Let $f, g: A \rightarrow \mathbf{R}$ be functions such that $f(x) \leq g(x)$ for all $x \in A$, and let c be cluster point of A. If $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, use the definition to show that $L \leq M$.

B16. Let $f:[a, b] \rightarrow \mathbf{R}$ be a continuous function. Prove that f is bounded on $[a, b]$.
B17. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Show that there exists a number $c \in[0,1]$ such that $f(c)=c$. (Hint: consider the function $g(x)=f(x)-x$.)

C6. Use the definition to show that $\lim _{x \rightarrow \infty} \frac{x^{2}-x+4}{2 x^{2}-5 x+7}=\frac{1}{2}$.
C7. Let $f:(0, \infty) \rightarrow \mathbf{R}, f(x)=0$ if x is irrational, $f(x)=\frac{1}{n}$ if x is a rational number represented by $\frac{m}{n}$ in reduced form. Show that f is continuous at every irrational point and discontinuous at every rational point.

