College Algebra — Joysheet 9 /0 MAT 140, Fall 2014 — D. Ivanšić

Name: Saul Ocean

Show all your work!

- a) Is this function one-to-one? Justify.
- b) If the function is one-to-one, find the graph of f^{-1} , labeling the relevant points.

2. (12pts) Let $f(x) = \frac{2x-1}{3x+7}$. Find the formula for f^{-1} . Find the domain and range of f.

$$5 = \frac{2x-1}{3x+7}$$

$$5(3x+7) = 2x-1$$
 $D = (-\infty, -\frac{7}{3}) \cup (-\frac{7}{3}, \infty)$

$$3yx + 7y = 2x - 1$$

$$3yx - 2x = -7y - 1$$

$$x(35-2) = -75-1 \qquad R = (-\infty, \frac{2}{3}) \cup (\frac{2}{3}, \infty)$$

$$x = \frac{-75-1}{35-2} = \frac{75+1}{2-35} \qquad \vec{\uparrow}(5) = \frac{75+1}{2-35}$$

$$2 = \frac{3}{3}$$

$$5 = \frac{2}{3}$$

$$x = \frac{1}{3y-2} = \frac{1}{2-3y}$$
 $f(y) = \frac{1}{2-3y}$
3. (8pts) Evaluate without using the calculator:

$$\log_2 128 = 7$$

$$\log_4 \frac{1}{64} = -3$$

$$\log_{25} 125 = \frac{3}{2}$$

$$\log_b \sqrt[7]{b^3} = \frac{3}{7}$$

$$2^{\frac{2}{128}}$$
 $4^{\frac{2}{164}} = \frac{1}{4^{\frac{2}{164}}} = 4^{\frac{2}{3}}$ $25^{\frac{2}{128}} = 125$

$$(2)^{2} = 5^{3}$$

$$A = P(1+\frac{r}{u})^{4} = 3000(1+\frac{0.0333}{12})^{12 \cdot \frac{42}{12}} = 3000(1+\frac{0.0333}{12})^{42} = 3370.30$$

$$42 u_0 = \frac{42}{12} years$$

6. (3pts) Find the domain of
$$f(x) = \log_9(3x - 1)$$
.

- 7. (7pts) The cost per household for taking the US census is modeled by the function $C(t) = 15.5202(1.0508)^t$, where t is the number of years since 1970.
- a) Find the per-household census cost in 1990. According to the model, what will be the per-household cost in 2020?
- b) Use the intersect feature on the calculator to estimate in what year the per-household cost will go past \$200.

8. (14pts) Using transformations, draw the graphs of $f(x) = 3 - 2^{-x}$ and $g(x) = \frac{1}{2} \log(x - 5)$. Explain how you transform graphs of basic functions in order to get the graphs of f and g.

