Introduction to	Topology —	Exam 1
MAT 516/616,	Fall 2013 —	D. Ivanšić

Name:

Show all your work!

Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let X be a set. Define what a topology on X is.

Theory 2. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Define Int A.

Theory 3. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. State the theorem that reveals the relationship between Int A, Bd A and Ext A.

Type A problems (5pts each)

A1. Let $X = \{a, b, c\}$. Which of the following collections is a topology on X?

$$\mathcal{T}_1 = \{\emptyset, \{a\}, \{a,b\}\}, \quad \mathcal{T}_2 = \{\emptyset, \{a\}, \{a,b\}, \{a,b,c\}\}, \quad \mathcal{T}_3 = \{\emptyset, \{a,b\}, \{b,c\}, \{a,c\}, \{a,b,c\}\}\}$$

A2. Let $A = (-2, 2) \cup \{5\}$ be a subset of the topological space $(\mathbf{R}, \mathcal{H})$. Find A', Int A and Bd A.

A3. Let $A = \mathbf{Q} \cap [0, 1]$ (all rationals between 0 and 1) be a subset of the topological space $(\mathbf{R}, \mathcal{U})$. Determine $\operatorname{Cl} A$.

A4. Let A be a subset of a the topological space (X, \mathcal{T}) . Show that $\operatorname{Cl} A = \operatorname{Int} A$ if and only if A is both open and closed. (Hint: don't do anything complicated. Use properties of interior and closure.)

A5. Let (X, \mathcal{T}) be a topological space. Show that a subset $A \subseteq X$ is dense if and only if for every open set $U, U \cap A \neq \emptyset$.

A6. Let $f:(X,\mathcal{T}) \to (Y,\mathcal{S})$ be the function between topological spaces defined by $f(x) = y_0$, where y_0 is a fixed element of Y. Show that f is continuous.

A7. Let X be any set with three elements or more and \mathcal{B} be the collection of all two-element subsets of X. Show that \mathcal{B} is not a base for any topology.

Type B problems (8pts each)

B1. Let $f : \mathbf{R} \to \mathbf{R}$ be the function given below. Determine whether f is a) \mathcal{U} - \mathcal{U} continuous b) \mathcal{C} - \mathcal{C} continuous

$$f(x) = \begin{cases} x, & \text{if } x \ge 0\\ x - 1, & \text{if } x < 0. \end{cases}$$

- **B2.** Show that the linear function $f: \mathbf{R} \to \mathbf{R}$, f(x) = mx + b, m > 0 is $\mathcal{C}\text{-}\mathcal{C}$ continuous. How about when m = 0 or m < 0?
- **B3.** For every subset A of a topological space X show that $\operatorname{Cl} A = A \cup \operatorname{Bd} A$.
- **B4.** Show that the collection $\mathcal{B} = \{B_{\frac{1}{n}}(x) \mid x \in \mathbf{R}, n \in \mathbf{N}\}$ is a base for $(\mathbf{R}, \mathcal{U})$, where the balls are defined using the usual metric d(x, y) = |x y|.
- **B5.** Let $f:(X,\mathcal{T})\to (Y,\mathcal{S})$ be a function between topological spaces and let \mathcal{B} be a base for \mathcal{S} . Show that f is continuous if and only if $f^{-1}(B)$ is open in X for every $B\in\mathcal{B}$.
- **B6.** Show that the function $d((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + 5|y_1 y_2|$ is a metric on \mathbb{R}^2 . Determine what $B_1(0, 0)$ is.
- **B7.** Show that the function d defined below is a metric on \mathbf{N} (natural numbers).

$$d(m,n) = \begin{cases} 0, & \text{if } m = n \\ \frac{1}{2}, & \text{if } m \neq n \text{ and both are even or both are odd} \\ 1 & \text{if one is even and the other is odd.} \end{cases}$$

Type C problems (12pts each)

C1. A collection \mathcal{T} of subsets of the set of natural numbers \mathbf{N} is defined as follows: $U \in \mathcal{T}$ provided that for every $m \in U$, all the divisors of m are also in U, where 1 is considered a divisor.

For example:
$$\{1, 2, 3, 4, 6, 12\}$$
, $\{1, 2, 4, 8\}$, $\{1, 7\}$, $\{3^k \mid k \ge 0\}$ are in \mathcal{T} ; $\{2, 5, 10\}$, $\{14, 28\}$, $\{1, 5, 6, 30\}$ are not in \mathcal{T} .

- a) Show that \mathcal{T} is a topology on \mathbb{N} .
- b) Find Cl A, where $A = \{15\}$.
- **C2.** For any set A in a topological space X, show that Cl(Int(Cl(Int A))) = Cl(Int A). Show also that Int(Cl(Int(Cl A))) = Int(Cl A). (Hint: don't do anything complicated. Use properties of interior and closure.)

Introduction to Topology — Exam 2 MAT 516/616, Fall 2013 — D. Ivanšić

Name:

Show all your work!

Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let X be a topological space and $A \subseteq X$. Define the relative topology on A.

Theory 2. (3pts) Define the neighborhood of point.

Theory 3. (3pts) Let X, Y_1, \ldots, Y_n be topological spaces. State the theorem that gives a criterion for when a function $f: X \to Y_1 \times \cdots \times Y_n$ is continuous, where $Y_1 \times \cdots \times Y_n$ has the product topology.

Type A problems (5pts each)

A1. Let $A = (-\infty, 7]$ be a subspace of $(\mathbf{R}, \mathcal{U})$. Which of the subsets of A are open in the relative topology: (-1, 3), $(-\infty, 4]$, (0, 7]? Prove your answers.

A2. Let $X = \{a, b, c, d\}$ with the topology $\mathcal{T} = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$. Let $A = \{a, b, c\}$. Find Int $\{a, c\}$ and Int $\{a, c\}$ and justify your answer.

A3. Let X be a topological space and let $A \subset X$ be a closed set. Show that $F \subseteq A$ is closed in A if and only if F is closed in X.

A4. Give an example of a function $f: (\mathbf{R}, \mathcal{H}) \to (\mathbf{R}, \mathcal{H})$ that is not continuous. Then give an example of a function that is not open.

A5. Let X be a topological space and define $f: X \times X \to X \times X$ as f(x,y) = (y,x). Show that f is a homeomorphism. What is its inverse?

A6. Group the subspaces of \mathbb{R}^2 into groups of homeomorphic spaces. Show spaces from one pair of groups are not homeomorphic.

Type B problems (8pts each)

B1. Let X and Y be topological spaces with bases \mathcal{B}_1 and \mathcal{B}_2 . Show that the collection $\mathcal{B} = \{B_1 \times B_2 \mid B_1 \in \mathcal{B}_1, B_2 \in \mathcal{B}_2\}$ is a base for the product space $X \times Y$.

B2. Let $X = \{a, b, c, d\}$ with the topology $\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c, d\}\}$. Find all the homeomorphisms $f: X \to X$ and justify that your list is exhaustive.

- **B3.** Let X have the discrete topology. Show that the product topology on $X \times X$ is the discrete topology (i.e. every subset of $X \times X$ is open in the product topology).
- **B4.** Let X be a topological space, and let $X \times X$ have the product topology. Define $Z \subseteq X \times X$ to be the set $Z = \{(x, x) \in X \times X \mid x \in X\}$.
- a) Draw the set Z for the closed interval X = [1, 2].
- b) Show that X is homeomorphic to Z (Z has the relative topology).
- **B5.** Let **R** have the topology C. Show with a picture that the multiplication function $m: \mathbf{R} \times \mathbf{R} \to \mathbf{R}$ is not continuous. (Hint: what are basic open sets in $\mathbf{R} \times \mathbf{R}$ like?)

C1. Let X and Y be topological spaces, $A \subseteq X$, $B \subseteq Y$. Show that

$$\operatorname{Bd}(A \times B) = (\operatorname{Bd} A \times \operatorname{Cl} B) \cup (\operatorname{Cl} A \times \operatorname{Bd} B).$$

Illustrate for $X, Y = \mathbf{R}, A = (2, 4), B = (1, 3)$. (Hint: you will not need to go into definitions, just use established properties.)

C2. Let $X = \mathbf{R}^2 - \{(0,0)\}$ and $Y = \{(x,y) \in \mathbf{R}^2 \mid x^2 + y^2 > 1\}$. Show that X and Y are homeomorphic. First sketch what the homeomorphism does, then write a formula for it and prove it is a homeomorphism.

Introduction to Topology — Exam 3 MAT 516/616, Fall 2013 — D. Ivanšić

Name:

Show all your work!

Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Define when a topological space X is connected.

Theory 2. (3pts) Define a Hausdorff space.

Theory 3. (3pts) State the theorem that characterizes compact subsets of **R** (Heine-Borel Theorem).

Type A problems (5pts each)

A1. Let $X = \{a, b, c, d\}$ with the topology $\mathcal{T} = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$, and let $A = \{a, b\}$. Is X connected? Is A connected? Prove your answers.

A2. Show that any subset of $(\mathbf{R}, \mathcal{H})$ with at least two elements is disconnected.

A3. Let **R** have the topology $\mathcal{T} = \{U \subseteq \mathbf{R} \mid U = \mathbf{R} \text{ or } [-2,2] \subseteq U^c\}$. Is (\mathbf{R},\mathcal{T}) connected?

A4. Is the set $\mathbf{Q} \cap [0,1]$ (with usual topology) compact? Prove your answer.

A5. Use the Intermediate Value Theorem to show there exists a real number c satisfying $c^3 = 5$.

A6. Show that (1,4) is not a compact subset of $(\mathbf{R}, \mathcal{H})$.

A7. Show that $[3, \infty)$ is a compact subset of $(\mathbf{R}, \mathcal{C})$.

Type B problems (8pts each)

B1. Show that any connected subset A of $(\mathbf{R}, \mathcal{U})$ has the property: if x < y are elements of A, then any $z \in (x, y)$ is also in A.

B2. Let $A \subseteq \mathbf{R} \times \mathbf{R}$ be the set $A = ([0,1) \times \mathbf{R}) \cup \{(1,n) \mid n \in \mathbf{Z}\}$. Is A connected? Prove your answer.

B3. Let X be a topological space and A a finite subset of X. Show that A is compact.

B4. Show that the punctured plane $\mathbf{R} \times \mathbf{R} - \{(0,0)\}$ is a connected space, with the topology relative to the usual product topology on $\mathbf{R} \times \mathbf{R}$. (Use known theorems and properties of connectedness rather than the definition.)

B5. Let X be a Hausdorff space, and let $X \times X$ have the product topology. Define $Z \subseteq X \times X$ to be the set $Z = \{(x, x) \in X \times X \mid x \in X\}$. Show that Z is a closed subset of $X \times X$.

Type C problems (12pts each)

- **C1.** Let X be the square $[0,1] \times [0,1]$ with the usual product topology and $f: X \to \mathbf{R}$ a continuous function so that f(0,0) = -3 and f(1,1) = 2. Show that there is a point (c,d) in $(0,1) \times (0,1)$ (the "interior") such that f(c,d) = 0.
- C2. Give an example of a compact subset of $(\mathbf{R}, \mathcal{U})$ that is not a closed interval. Then show: if $A \subseteq (\mathbf{R}, \mathcal{U})$ is a compact and connected subset, then A is a closed interval.

Introduction to Topology — Final Exam MAT 516/616, Fall 2013 — D. Ivanšić

Name:

Show all your work!

Do all the theory problems. Then do at least five problems, one of which is of type B or C (two if you are a graduate student). If you do more than five, best five will be counted.

Theory 1. (3pts) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Define Cl A.

Theory 2. (3pts) Define the product topology.

Theory 3. (3pts) Define when a topological space X is compact.

Type A problems (5pts each)

A1. Let (X, \mathcal{T}) be a topological space. Show that a subset $A \subseteq X$ is dense if and only if for every open set $U, U \cap A \neq \emptyset$.

A2. Let X be any set with three elements or more and \mathcal{B} be the collection of all two-element subsets of X. Show that \mathcal{B} is not a base for any topology.

A3. Let X be a topological space and let $A \subset X$ be a closed set. Show that $F \subseteq A$ is closed in A if and only if F is closed in X.

A4. Let X be a topological space and define $f: X \times X \to X \times X$ as f(x,y) = (y,x). Show that f is a homeomorphism. What is its inverse?

A5. Show that any subset of $(\mathbf{R}, \mathcal{H})$ with at least two elements is disconnected.

A6. Show that (1,4) is not a compact subset of $(\mathbf{R}, \mathcal{H})$.

A7. Show that $[3, \infty)$ is a compact subset of $(\mathbf{R}, \mathcal{C})$.

Type B problems (8pts each)

B1. Let $f: \mathbf{R} \to \mathbf{R}$ be the function given below. Determine whether f is a) \mathcal{U} - \mathcal{U} continuous b) \mathcal{C} - \mathcal{C} continuous

$$f(x) = \begin{cases} x, & \text{if } x > 0\\ x - 1, & \text{if } x \le 0. \end{cases}$$

B2. Show that the collection $\mathcal{B} = \{B_{\frac{1}{n}}(x) \mid x \in \mathbf{R}, n \in \mathbf{N}\}$ is a base for $(\mathbf{R}, \mathcal{U})$, where the balls are defined using the usual metric d(x, y) = |x - y|.

B3. Let X have the discrete topology. Show that the product topology on $X \times X$ is the discrete topology (i.e. every subset of $X \times X$ is open in the product topology).

- **B4.** Let $A \subseteq \mathbf{R} \times \mathbf{R}$ be the set $A = ([0,1) \times \mathbf{R}) \cup \{(1,n) \mid n \in \mathbf{Z}\}$. Is A connected? Prove your answer.
- **B5.** Show that the punctured plane $\mathbf{R} \times \mathbf{R} \{(0,0)\}$ is a connected space, with the topology relative to the usual product topology on $\mathbf{R} \times \mathbf{R}$. (Use known theorems and properties of connectedness rather than the definition.)
- **B6.** Let X be a Hausdorff space, and let $X \times X$ have the product topology. Define $Z \subseteq X \times X$ to be the set $Z = \{(x, x) \in X \times X \mid x \in X\}$. Show that Z is a closed subset of $X \times X$.

Type C problems (12pts each)

C1. A collection \mathcal{T} of subsets of the set of natural numbers \mathbf{N} is defined as follows: $U \in \mathcal{T}$ provided that for every $m \in U$, all the divisors of m are also in U, where 1 is considered a divisor.

For example: $\{1, 2, 3, 4, 6, 12\}, \{1, 2, 4, 8\}, \{1, 7\}, \{3^k \mid k \ge 0\}$ are in \mathcal{T} ; $\{2, 5, 10\}, \{14, 28\}, \{1, 5, 6, 30\}$ are not in \mathcal{T} .

- a) Show that \mathcal{T} is a topology on \mathbb{N} .
- b) Find Cl A, where $A = \{15\}$.
- C2. Let $X = \mathbb{R}^2 \{(0,0)\}$ and $Y = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 > 1\}$. Show that X and Y are homeomorphic. First sketch what the homeomorphism does, then write a formula for it and prove it is a homeomorphism.
- **C3.** Let X be the square $[0,1] \times [0,1]$ with the usual product topology and $f: X \to \mathbf{R}$ a continuous function so that f(0,0) = -3 and f(1,1) = 2. Show that there is a point (c,d) in $(0,1) \times (0,1)$ (the "interior") such that f(c,d) = 0.
- C4. Give an example of a compact subset of $(\mathbf{R}, \mathcal{U})$ that is not a closed interval. Then show: if $A \subseteq (\mathbf{R}, \mathcal{U})$ is a compact and connected subset, then A is a closed interval.