Calculus 3 - Final Exam
MAT 309, Fall 2012 - D. Ivanšić

Name:
Show all your work!

1. (6pts) What is the angle between vectors \mathbf{a} and \mathbf{b} if we know that $\|\mathbf{a}\|=3,\|\mathbf{b}\|=4$ and $\mathbf{a} \cdot \mathbf{b}=6$?
2. (10pts) Find the equation of the plane that contains the points $A=(1,3,1), B=$ $(4,-7,2)$ and $C=(-1,-1,-1)$.
3. (16pts) Consider the function $f(x, y)=\frac{y}{x}$ for $x, y>0$.
c) Draw a rough contour map for the function, with contour interval $\frac{1}{4}$, going from $c=\frac{1}{4}$ to $c=\frac{3}{2}$.
b) Find ∇f and roughly draw this vector field (scale the vectors for a better picture) Note that no computation is needed to draw the vector field.
c) What is $\int_{C} \nabla f \cdot d \mathbf{s}$ if C is the arc of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$?
4. (14pts) A curve is given by $\mathbf{r}(t)=\langle\cos t, \sin t, 5 t\rangle, t \in[0,4 \pi]$.
a) Sketch this curve.
b) Find the parametric equation of the tangent line to the curve at time $t=\pi$ and draw this tangent line on your sketch.
5. (10pts) Find the equation of the tangent plane to the surface $\frac{x^{2}}{12}-\frac{y^{2}}{4}+\frac{z^{2}}{2}=1$ at the point $(3,1,-1)$. Simplify the equation to standard form.
6. (14pts) Let $f(x, y)=\frac{e^{x y}}{x^{2}}, x=-2 u+5 v, y=u-3 v$. Use the chain rule to find $\frac{\partial f}{\partial u}$ when $u=6, v=2$.
7. (16pts) Find and classify the local extremes for $f(x, y)=2 x^{2} y^{2}+3 x^{3}-4 x$.
8. (18pts) Find $\iint_{D} x^{2}+y^{2} d A$ if D is the region above $y=|x|$ and between lines $y=3$ and $y=5$. Sketch the region of integration.
9. (12pts) Sketch the region W that is the part of the ball $x^{2}+y^{2}+z^{2} \leq 16$, above the plane $z=3$, and to the right of the plane $y=2$. Then write the iterated triple integral that stands for $\iiint_{W} f d V$ which ends in $d y d z d x$.
10. (22pts) Compute the integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, if S is the part of the paraboloid $z=10-x^{2}-y^{2}$ that is above the $x y$-plane and $\mathbf{F}(x, y, z)=\langle x, y, 1+z\rangle$. (The surface does not include any part of the $x y$-plane, just part of the paraboloid.) Use the normal vectors to the paraboloid that point upwards. Draw the surface and some normal vectors, parametrize the surface and specify the planar region D where your parameters come from.
11. (12pts) Is the vector field below a gradient field? If yes, find its potential function. $\mathbf{F}(x, y, z)=\left\langle-z^{3}, 3 z, 2 z+3 y-3 x z^{2}\right\rangle$

Bonus. (15pts) The intersection of balls $x^{2}+y^{2}+z^{2} \leq 1$ and $x^{2}+y^{2}+(z-1)^{2} \leq 1$ is a lens-shaped region. Find its volume by doing the following:
a) Use spherical coordinates to find the volume of the region inside $x^{2}+y^{2}+(z-1)^{2} \leq 1$ that is outside of $x^{2}+y^{2}+z^{2} \leq 1$.
b) Find the volume of the lens using your result from a). Recall that the volume of a ball of radius R is $\frac{4}{3} \pi R^{3}$.

