Calculus 3 — Exam 5 MAT 309, Fall 2012 — D. Ivanšić

Name:

Show all your work!

1. (15pts) Let $\mathbf{F}(x, y) = \langle y, x \rangle$.

a) Roughly draw the vector field $\mathbf{F}(x, y)$, scaling the vectors for a better picture.

b) Guess a function $\phi(x, y)$ so that $\mathbf{F} = \nabla \phi$.

c) How could you have roughly done a) without evaluating the vector field at various points?

d) What is $\int_C \mathbf{F} \cdot d\mathbf{s}$ if C is part of the curve $y = \sin x$ from (0,0) to $(\frac{\pi}{2},1)$? How about if C is a straight line segment from (0,0) to $(\frac{\pi}{2},1)$?

e) What is $\int_C \mathbf{F} \cdot d\mathbf{s}$ if C is the unit circle?

2. (15pts) Let C be the curve x = 1 + t, $y = 4 \sin t$, $z = t^2$, for $t \in [0, \pi]$.

a) Set up $\int_C z(e^x + e^y) ds$.

b) Set up $\int_C \mathbf{F} \cdot d\mathbf{s}$, if $\mathbf{F}(x, y, z) = \langle x^2, z, y^2 \rangle$.

In both cases simplify the set-up, but do not evaluate the integral.

3. (16pts) One of the two vectors fields below is not a gradient field, and the other one is (cross partials, remember?). Identify which is which, and find the potential function for the one that is.

$$\mathbf{F}(x,y,z) = \langle \cos(xz), \sin(yz), xy \sin z \rangle \qquad \qquad \mathbf{G}(x,y,z) = \langle 2xy + z^2, x^2 + 2yz, y^2 + 2xz \rangle$$

4. (12pts) A surface is parametrized by $\Phi(u, v) = (u^2 + v^2, uv, u^2 - v^2)$. Find the equation of the tangent plane to this surface at the point where (u, v) = (1, 1).

5. (24pts) Find the surface integral $\iint_S x \, dS$, if S is part of the sphere $x^2 + y^2 + z^2 = 4$ that is in the octant $x, y, z \ge 0$. Draw the surface, parametrize it and specify the planar region D where your parameters come from.

6. (18pts) Set up the integral for $\iint_S \mathbf{F} \cdot d\mathbf{S}$, if S is the part of the paraboloid $z = 10 - x^2 - y^2$ that is above the xy-plane and $\mathbf{F}(x, y, z) = \langle x, y, 1 + z \rangle$. (The surface does not include any part of the xy-plane, just part of the paraboloid.) Use the normal vectors to the paraboloid that point upwards. Draw the surface and some normal vectors, parametrize the surface and specify the planar region D where your parameters come from. Simplify the set-up, but do not evaluate the integral.

Bonus. (10pts) Find the surface area of the part of the sphere $x^2 + y^2 + z^2 = 9$ that is between the planes z = 1 and z = 2.