Calculus 3 - Exam 5 MAT 309, Fall 2012 - D. Ivanšić

Name:

> Show all your work!

1. (15pts) Let $\mathbf{F}(x, y)=\langle y, x\rangle$.
a) Roughly draw the vector field $\mathbf{F}(x, y)$, scaling the vectors for a better picture.
b) Guess a function $\phi(x, y)$ so that $\mathbf{F}=\nabla \phi$.
c) How could you have roughly done a) without evaluating the vector field at various points?
d) What is $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ if C is part of the curve $y=\sin x$ from $(0,0)$ to $\left(\frac{\pi}{2}, 1\right)$? How about if C is a straight line segment from $(0,0)$ to $\left(\frac{\pi}{2}, 1\right)$?
e) What is $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ if C is the unit circle?
2. (15pts) Let C be the curve $x=1+t, y=4 \sin t, z=t^{2}$, for $t \in[0, \pi]$.
a) Set up $\int_{C} z\left(e^{x}+e^{y}\right) d s$.
b) Set up $\int_{C} \mathbf{F} \cdot d \mathbf{s}$, if $\mathbf{F}(x, y, z)=\left\langle x^{2}, z, y^{2}\right\rangle$.

In both cases simplify the set-up, but do not evaluate the integral.
3. (16pts) One of the two vectors fields below is not a gradient field, and the other one is (cross partials, remember?). Identify which is which, and find the potential function for the one that is.
$\mathbf{F}(x, y, z)=\langle\cos (x z), \sin (y z), x y \sin z\rangle$

$$
\mathbf{G}(x, y, z)=\left\langle 2 x y+z^{2}, x^{2}+2 y z, y^{2}+2 x z\right\rangle
$$

4. (12pts) A surface is parametrized by $\Phi(u, v)=\left(u^{2}+v^{2}, u v, u^{2}-v^{2}\right)$. Find the equation of the tangent plane to this surface at the point where $(u, v)=(1,1)$.
5. (24pts) Find the surface integral $\iint_{S} x d S$, if S is part of the sphere $x^{2}+y^{2}+z^{2}=4$ that is in the octant $x, y, z \geq 0$. Draw the surface, parametrize it and specify the planar region D where your parameters come from.
6. (18pts) Set up the integral for $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, if S is the part of the paraboloid $z=10-x^{2}-y^{2}$ that is above the $x y$-plane and $\mathbf{F}(x, y, z)=\langle x, y, 1+z\rangle$. (The surface does not include any part of the $x y$-plane, just part of the paraboloid.) Use the normal vectors to the paraboloid that point upwards. Draw the surface and some normal vectors, parametrize the surface and specify the planar region D where your parameters come from. Simplify the set-up, but do not evaluate the integral.

Bonus. (10pts) Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=9$ that is between the planes $z=1$ and $z=2$.

