```
Calculus 3- Exam 3
MAT 309, Fall 2012 - D. Ivanšić
```

Name:

1. (12pts) Find the equation of the tangent plane to the surface $x^{2}-\frac{y^{2}}{4}-\frac{z^{2}}{9}=1$ at the point $\left(2, \sqrt{2}, 3 \sqrt{\frac{5}{2}}\right)$. Simplify the equation to standard form.
2. (18pts) Let $f(x, y)=x^{2}-y^{2}$.
a) Find the directional derivative of f at the point $(3,2)$ in the direction of $\mathbf{v}=\langle 1,-5\rangle$. b) At the point $(3,2)$, in which direction does the function increase the fastest? Decrease the fastest?
c) Find $\frac{d}{d t} f(\mathbf{r}(t))$ for the path $\mathbf{r}(t)=\left\langle 4-3 t, t^{2}-2 t\right\rangle$ when $t=1$.
3. (20pts) Let $f(x, y)=\frac{\ln x}{\ln x+\ln y}, x=e^{u} \cos v, y=e^{u} \sin v$. Use the chain rule to find $\frac{\partial f}{\partial v}$ when $u=3, v=\frac{\pi}{6}$.
4. (14pts) In an improbable scenario, you find yourself on a desert island with no technology and have to estimate $\frac{\sqrt{20.2}}{\sqrt{4.99}}$. (Or, in a more likely one, you find yourself in test-taking environment with no calculators allowed.) Use linearization to estimate this number, and compare it to the calculator result of 2.011988 .
5. (14pts) Using implicit differentiation, find $\frac{\partial z}{\partial y}$ at the point $(-1,2,1)$, if $x^{2} y+y^{2} z+z^{2} x=5$.
6. (22pts) Find and classify the local extremes for $f(x, y)=\frac{2}{3} x^{3}+2 x y-2 y^{2}-10 x$.

Bonus (10pts) Find the absolute maximum and minimum of $f(x, y)=x^{2}+y^{2}-6 x-4 y$ on the domain $x \geq 0, y \geq 0, y \leq-2 x+3$.

