Calculus 3 - Exam 2	
MAT 309, Fall $2012-$ D. Ivanšić	Name:

1. $(14 \mathrm{pts})$ A curve is given by $\mathbf{r}(t)=\left\langle\cos t, \sin t, \sin \frac{t}{2}\right\rangle, t \in[0,2 \pi]$.
a) Sketch this curve.
b) Find the parametric equation of the tangent line to the curve at time $t=\frac{\pi}{2}$ and draw this tangent line on your sketch.
2. (16pts) Consider the curve C that is the intersection of the cylinder $x^{2}+z^{2}=4$ with the parabolic cylinder $z=y^{2}$.
a) Sketch a picture.
b) Parametrize each of the two parts of the curve corresponding to $x \geq 0$ and $x \leq 0$, taking y as the parameter.
c) What interval does the parameter run through to get each of the two parts?
3. (22pts) Consider the function $f(x, y)=\frac{y}{x^{2}}$ for $x>0, y$ any.
a) Identify and draw vertical traces for this function.
b) Using a), draw the graph of the function.
c) Draw a rough contour map for the function, with contour interval $\frac{1}{2}$, going from $c=-\frac{3}{2}$ to $c=\frac{3}{2}$.
d) By looking at the contour map, indicate a path on which we could move from $(\sqrt{2}, 1)$ in order to increase the value of the function to 1 .
4. (16pts) Find the length of the curve with the parametrization $\mathbf{r}(t)=\left\langle t^{\frac{3}{2}}, 5 \sin t, 5 \cos t\right\rangle$, $t \in[0,4 \pi]$.
5. (20pts) Acting on a dare, your favorite physics professor Dr. \qquad (insert name here) launches himself from 40 meters away from base of Faculty Hall (height 21 meters) and lands on its roof $\frac{19}{2}$ meters away from the edge. (See picture.) The angle α of launch was such that $\cos \alpha=\frac{3}{5}$. Assume $g=10$ for simplicity.
a) Find his position at time t. The expression will have an unknown initial speed v_{0} in it. b) Now find v_{0}.

6. $(12 \mathrm{pts})$ Determine and sketch the domain of the function $f(x, y)=\frac{\sqrt{x-y-5}}{x+y}$.

Bonus (10pts) Use coordinates to prove the formula $(\mathbf{u}(t) \times \mathbf{v}(t))^{\prime}=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$ for any two vector functions $\mathbf{u}(t)$ and $\mathbf{v}(t)$,

