Algebra and Trigonometry — Joysheet 8 MAT 150, Fall 2013 — D. Ivanšić

Name:

Soul Ocean

Show all your work!

Solve the equations:

1. (6pts)
$$4x^{2} + 4 = x^{2} + 7x + 1 \quad | - x^{2} - 7x - 7x - 3x^{2} - 7x + 3 = 0$$

$$x = \frac{-(-7) + \sqrt{(-7)^{2} - 4 \cdot 3 \cdot 3}}{2 \cdot 3} = \frac{7 + \sqrt{13}}{6}$$

2. (8pts)
$$x^4 - 3x^2 - 28 = 0$$

Set $u = \chi^2$
 $u^2 - 3u - 28 = 0$
 $(u - 7)(u + 4) = 0$
 $u = 7, -4$ $\chi = 7$ $\chi^2 - 4$
 $\chi = \pm \sqrt{7}$ $\chi = \pm 2i$

3. (6pts) Solve by completing the square.

$$x^{2} + 14x - 11 = 0 \qquad | + 7^{2}$$

$$x^{2} + 2x \cdot 7 + 7^{2} - 11 = 7^{2}$$

$$(x + 7)^{2} = 49 + 11$$

$$(x + 7)^{2} = 60$$

$$x + 7 \pm 2\sqrt{15}$$

- 4. (12pts) The quadratic function $f(x) = 2x^2 3x 20$ is given. Do the following without using the calculator.
- a) Find the x-intercepts of its graph, if any. Find the y-intercept.
- b) Find the vertex of the graph.
- c) Sketch the graph of the function.

9)
$$y - 14d$$
: $\xi(0) = -20$
 $x - 14$ $2x - 3x - 20 = 0$
 $x = -(-) + \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-20)}$
 $= \frac{3 + \sqrt{169}}{4} = \frac{3 + 13}{4} = -\frac{5}{2}, 4$
 $t_1 = \frac{-2}{2 \cdot 2} = \frac{3}{4}$
 $t_2 = \frac{3}{4} = \frac{3}{4} = -21\frac{1}{8}$

5. (14pts) Rancher Fiona has a rectangular plot of land whose perimeter is 16 miles. If she were to increase the length by 2 miles and width by 3 miles, the area of the land would triple. What are the possible dimensions of the rectangular plot?

3
$$(x+2)(y+3) = 3 \times y$$

$$(x+2)(11-x) = 24x-3x^{2}$$

$$(x+2)(11-x) = 24x-3x^{2$$

- 6. (14pts) You have 100 meters of fencing and wish to enclose a rectangular plot that is divided into three pieces by fencing parallel to one of the sides.
- a) Express the area of the enclosure as a function of the length of one of the sides. What is the domain of this function?
- b) Sketch the graph of the function in order to find the maximum (no need for the graphing calculator — you should already know what the graph looks like). What are the dimensions of the enclosure that has the greatest area and what is the greatest area possible?

