1. (5pts) Use an addition formula to find the exact value of $\cos 165^{\circ}$ (do not use the calculator).
2. (3pts) Find the exact value of the expression (do not use the calculator):
$\frac{\tan 57^{\circ}+\tan 12^{\circ}}{1-\tan 57^{\circ} \tan 12^{\circ}}=$
3. (5pts) Use a half-angle formula to find the exact value of $\cos \frac{7 \pi}{12}$ (do not use the calculator).
4. (9pts) Suppose that $-\frac{\pi}{2}<\alpha<0$ and $\frac{\pi}{2}<\beta<\pi$ are angles so that $\tan \alpha=-\frac{5}{3}$ and $\sin \beta=\frac{2}{7}$. Use addition and half-angle formulas to find:
a) $\sin (\alpha-\beta)$
b) $\sin \frac{\alpha}{2}$
5. (4pts) Solve the equation (give a general formula for all the solutions).
$2 \cos \theta+\sqrt{3}=0$
6. (5pts) Use your calculator to solve the equation on the interval $0 \leq \theta<2 \pi$. Round answers to two decimal places (answers in radians).
$\sin \theta=0.7$
7. (6 pts) Solve the equation on the interval $-\pi \leq \theta \leq \pi$:
$\sin \theta+\cos \theta=0$
8. (8pts) Solve the equation (give a general formula for all the solutions).
$\sin \theta+1=2 \cos ^{2} \theta$
9. (5pts) Establish the identity: $\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}=\cos \theta$

Bonus. (5pts) Establish the identity $\tan (\pi-\theta)=-\tan \theta$ in two ways:
a) by using an addition formula
b) by drawing a picture and explaining.

