1. (4pts) By inspection, explain why the following sets of vectors cannot be bases for \mathbf{R}^2 and \mathbf{R}^3 , respectively.

a) $\mathbf{v}_1 = (1, 1), \, \mathbf{v}_2 = (-1, 2), \, \mathbf{v}_3 = (0, 1)$

b) $\mathbf{v}_1 = (1, 2, 0), \, \mathbf{v}_2 = (0, 2, 1), \, \mathbf{v}_3 = (1, 0, -1)$

2. (5pts) Use matrix multiplication to find the matrix of the linear operator that is the composition of a rotation by 45° around the x axis, followed by a projection to the xy-plane.

3. (4pts) Find the standard matrix of the linear operator given by the equations below and determine whether it is a) one-to-one, or b) onto.

 $\begin{array}{rcl} w_1 &= 5x_1 - 3x_2 \\ w_2 &= -x_1 + \frac{3}{5}x_2 \end{array}$

4. (9pts) A matrix A is given below. a) Find a basis for the row space of A. b) Find a basis for the nullspace of A. c) Verify that $row(A)=null(A)^{\perp}$ by showing that every basis vector for row(A) is orthogonal to every basis vector for null(A).

$$A = \left[\begin{array}{rrrr} 1 & 3 & -2 & 0 \\ 2 & 6 & -5 & -2 \\ 0 & 0 & 5 & 10 \end{array} \right]$$

5. (5pts) Let W be the subspace of \mathbb{R}^3 spanned by vectors (2, 1, 4) and (1, -1, 0). Find a basis for W^{\perp} .

- 6. (6pts) Let A be a 3×7 matrix. Answer the following and justify your answers.
- a) What is the biggest rank(A) could be?
- b) What is the smallest $\operatorname{nullity}(A)$ could be?
- c) Give an example of a 3×7 matrix whose nullity is 5.

7. (4pts) Are the following vectors a basis for the subspace of \mathbf{R}^5 that they span? $\mathbf{v}_1 = (*, *, *, *, 1), \mathbf{v}_2 = (*, *, *, 1, 0), \mathbf{v}_3 = (*, *, 1, 0, 0)$

8. (4pts) Complete the vector (0, -1, 1) to a basis of \mathbb{R}^3 . (That is, find additional vectors with which (0, -1, 1) makes a basis.)

9. (9pts) Are the following statements true or false? Justify your answer by giving a logical argument or a counterexample.

- a) If E is an elementary matrix, then A and EA have the same row space.
- b) If A is a nonzero $m \times n$ matrix, then $\operatorname{nullity}(A) \leq n 1$.
- c) For every 2×2 matrix A, $\operatorname{row}(A^T) = \operatorname{row}(A)^{\perp}$.

Bonus. (5pts) Let $\mathbf{v}_1 = (0, 3, -6, 5)$, $\mathbf{v}_2 = (0, 1, -2, 3)$. Write a linear system whose solution space is span{ $\mathbf{v}_1, \mathbf{v}_2$ }.